Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T06:02:59.406Z Has data issue: false hasContentIssue false

Raman measurement and thermal properties of SmCa4O(BO3)3 crystals

Published online by Cambridge University Press:  31 January 2011

H. H. Xia
Affiliation:
Department of Physics and National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
G. G. Lu
Affiliation:
Department of Physics and National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
S. S. Zhang
Affiliation:
Institute of Crystal Materials and National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
Z. Z. Cheng
Affiliation:
Institute of Crystal Materials and National Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
Get access

Abstract

SmCa4O(BO3)3 (SCOB) crystallizes in the noncentrosymmetric monoclinic space group Cm with cell parameters a = 0.8129(5), b = 1.6076(1), c = 0.3584(1) nm, β = 101.36(2)°, and Z = 2. Raman results showed that the characteristic spectra of SCOB are mainly contributed by the B–O triangles and partly by the Ca(1)–O octahedra. The structural rigidity of SCOB is mainly ascribed to the B–O bond stretching and bending modes and partly by the Ca(1)–O bonds. The rigid structure of the B–O triangles and the quasi-rigid structure of the Ca(1)–O octahedra are necessary to the SCOB crystal as a laser host. The large distortions of the Sm–O and Ca(2)–O octahedra intensify the polar forces and anisotropic lattice forces, which generally imply the best nonlinear properties possible for SCOB as a nonlinear optical material and piezocrystal. Thermal measurements show a larger value of the specific heat and three small expansion coefficients, which show that SCOB can allow a large temperature gradient, especially in the Y direction. Displacement parameters indicated that the thermal ellipsoids of the Sm and Ca(2) atoms had significantly large components along the b direction. Synthetical study indicated that the SCOB crystal should be outstanding as an efficient self-frequency doubled material.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Leonyuk, N.I. and Leonyuk, L.I., Prog. Cryst. Growth Charact. Mater. 31, 181 (1995).Google Scholar
2.Amano, S., Jpn. Rev. Laser Eng. 77, 221 (1990).Google Scholar
3.Mougel, F., Aka, G., Salin, F., Pelenc, D., Ferrand, B., Kahn-Hararl, A., and Vivien, D., OSA Proc. Adv. Solid State Lasers 26, 709 (1999).Google Scholar
4.Iwai, M., Kobayashi, T., Furuya, I., Mori, Y., and Sasaki, T., Jpn. J. Appl. Phys. 36, L276 (1997).CrossRefGoogle Scholar
5.Aka, G., Bloch, L., Benitez, J.M., Crochet, P., Kahn-Harari, A., Vivien, D., Salin, F., Coquelin, P., and Colin, D., OSA TOPS Adv. Solid State Lasers 1, 336 (1996).Google Scholar
6.Jang, W.K., Ye, Q., Eichenholz, J., Richardson, M.C., and Chai, B.H.T., Opt. Commun. 155, 332 (1998).CrossRefGoogle Scholar
7.Robinson, K., Photonics Spectra 32, 38 (1998).Google Scholar
8.Chai, B.H.T., Eichenholz, J.M., Ye, Q., Hammons, D.A., Jang, W.K., Shah, L., Luntz, G.M., and Richardson, M., OSA TOPS Adv. Solid State Lasers 19, 56 (1998).Google Scholar
9.Ye, Q., Shah, L., Eichenholz, J.M., Hammons, D.A., Peale, R.E., Richardson, M., Chai, B.H.T., and Chin, A., OSA TOPS Adv. Solid State Lasers 26, 100 (1999).Google Scholar
10.Yoshimura, M., Furuya, H., Kobayashi, T., Murase, K., Mori, Y., and Sasaki, T., Opt. Lett. 24, 193 (1999).CrossRefGoogle Scholar
11.Mougel, F., Aka, G., Kahn-Harari, A., Hubert, H., Benitez, J.M., and Vivien, D., Opt. Mater. 8, 161 (1997).CrossRefGoogle Scholar
12.Xia, H.R., Li, L.X., Teng, B., Zheng, W.Q., Lu, G.W., Jiang, H.D., and Wang, J.Y., J. Raman Spectrosc. 33, 278 (2002).CrossRefGoogle Scholar
13.Norrestam, R., Nygren, M., and Bovin, J.Q., Chem. Mater. 4, 737 (1992).CrossRefGoogle Scholar
14.The International Tables for Crystallography, Vol. A: Space Group Symmetry, edited by Hahn, T. (D. Reidel, Dordrecht, The Netherlands, 1983).Google Scholar
15.Loudon, R., Adv. Phys. 13, 423 (1964); 14, 621 (1965).CrossRefGoogle Scholar
16.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (Wiley, New York, 1986).Google Scholar
17.Steele, W.C. and Decius, J.C., J. Chem. Phys. 25, 1184 (1956).CrossRefGoogle Scholar
18.Bethell, P.E. and Sheppard, N., Trans. Faraday Soc. 51, 9 (1959).CrossRefGoogle Scholar
19.Xia, H.R., Li, L.X., Wang, J.Y., Yu, W.T., and Yang, P., J. Raman Spectrosc. 30, 557 (1999).3.0.CO;2-Y>CrossRefGoogle Scholar
20.Hauck, J. and Fadini, A., Z. Naturforsch. 25b, 422 (1970).CrossRefGoogle Scholar
21.Hauck, J., Z. Naturforsch. 25b, 224, 468, 647 (1970).CrossRefGoogle Scholar
22.Chryssikos, G.D., J. Raman Spectrosc. 22, 645 (1991).CrossRefGoogle Scholar
23.Kugel, G.E., Brehat, F., Wyncke, B., Fontana, M.D., Marnier, G., Carabatos-Nedelec, C., and Mangin, J., J. Phys. C: Solid State Phys. 21, 5565 (1988).CrossRefGoogle Scholar
24.Graebner, J.E., Reiss, M.E., Seibles, L., Hartnett, T.M., Miller, R.P., and Robinson, C.J., Phys. Rev. B 50, 3702 (1994).CrossRefGoogle Scholar
25.Schwartz, J.W. and Walker, C.T., Phys. Rev. 155, 969 (1967).CrossRefGoogle Scholar