Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T11:06:37.484Z Has data issue: false hasContentIssue false

Raman and magnetization studies of barium ferrite powder prepared by water-in-oil microemulsion

Published online by Cambridge University Press:  31 January 2011

M. S. Chen*
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore
Z. X. Shen
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore
X. Y. Liu
Affiliation:
Department of Materials Science, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore
J. Wang
Affiliation:
Department of Materials Science, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore
*
a)Address correspondence to this author.[email protected]
Get access

Abstract

Micro-Raman spectroscopy was used to study the formation of BaFe12O19 (BaM) powders derived from water-in-oil microemulsion at different calcination temperatures. With increase in the calcination temperature, the Raman spectra of the BaM powders become narrower and stronger without apparent frequency shifts of the Raman bands. The calcination temperature dependence of the Raman spectra and the magnetic properties of the BaM powders result from the crystallization rather than size effect. Our results show that there is a strong correlation between the crystallinity and the magnetic properties, which could be explained in terms of the crystallization effect on the superexchange interaction between ferric ions. The γ–Fe2O3 phase occurred in the BaM precursor and the powder calcined at 500 °C. The α–Fe2O3 phase was developed in the powders calcined at 500, 600, and 700 °C, which was not detected by x-ray diffraction. With increasing calcination temperature, the γ–Fe2O3 phase can either react with oxide containing barium to form the BaM phase or transform to the α–Fe2O3 phase. The amount of α–Fe2O3 decreases due to reaction with BaCO3 to form BaM phase at higher calcination temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Braun, P.B., Philips Res. Rep. 12, 491 (1957).Google Scholar
2.Cullity, B.D., Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972), p. 575.Google Scholar
3.Sui, X.Y. and Kryder, M.H., Appl. Phys. Lett. 63, 1582 (1993).CrossRefGoogle Scholar
4.Zhang, W., Ding, W.P., Zhang, N., Hong, J.M., Yan, Q.J., and Du, Y.W., J. Magn. Magn. Mater. 168, 196 (1997).CrossRefGoogle Scholar
5.Rawlinson, D.A. and Sermon, P.A., J. Phys. IV 7, 755 (1997).Google Scholar
6.Pillai, V., Kumar, P., Multani, M.S., and Shah, D.O., Colloid Surface 80, 69 (1993).CrossRefGoogle Scholar
7.Pillai, V., Kumar, P., and Shah, D.O., J. Magn. Magn. Mater. 116, L299 (1992).CrossRefGoogle Scholar
8.López-Quintela, M.A. and Riras, J., J. Colloid Interf. Sci. 158, 446 (1993).CrossRefGoogle Scholar
9.Liu, X.Y., Wang, J., Gan, L.M., Ng, S.C., and Ding, J., J. Magn. Magn. Mater. 184, 344 (1998).CrossRefGoogle Scholar
10.Kreisel, J., Lucazeau, G., and Vincent, H., J. Solid State Chem. 137, 127 (1998).CrossRefGoogle Scholar
11.Kreisel, J., Pignard, S., Vincent, H., and Sénateur, J.P., Appl. Phys. Lett. 73, 1194 (1998).CrossRefGoogle Scholar
12.Kreisel, J., Lucazeau, G., and Vincent, H., J. Raman Spectrosc. 30, 115 (1999).3.0.CO;2-D>CrossRefGoogle Scholar
13.Sorig, C., Bonnenberg, D., Hempel, K.A., Karduck, P., Klaar, H.J., and Sauer, C., J. Phys. IV 7, 315 (1997).Google Scholar
14.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley & Sons, New York, 1967), p. 491.Google Scholar
15.de Faria, D.L.A., Silva, S.V., and de Oliveira, M.T., J. Raman Spectrosc. 28, 873 (1997).3.0.CO;2-B>CrossRefGoogle Scholar
16.Baraton, M.I., Busca, G., Lorenzelli, V., and Willey, R.J., J. Mater. Sci. Lett. 13, 275 (1994).CrossRefGoogle Scholar
17.Batlle, X., Obradors, X., Medarde, M., Rodríguez-Carvajar, J., and Pernet, M., J. Magn. Magn. Mater. 124, 228 (1993).CrossRefGoogle Scholar
18.Kojima, H., Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, edited by Wohlfarth, E.P. (North-Holland, The Netherlands, 1982), p. 315.Google Scholar
19.Hart, T.R., Adams, S.B., and Tempkin, H., in Proceedings of the 3rd International Conference on Light Scattering in Solids, edited by Balkanski, M., Leite, R., and Porto, S. (Flammarion, Paris, 1976), p. 259.Google Scholar
20.Richter, H., Wang, Z.P., and Ley, L., Solid State Commun. 39, 625 (1981).CrossRefGoogle Scholar
21.Campbell, I.H. and Fauchet, P.M., Solid State Commun. 58, 739 (1986).CrossRefGoogle Scholar
22.Besani, D., Lottici, P.P., and Ding, X.Z., Appl. Phys. Lett. 72, 73 (1998).CrossRefGoogle Scholar
23.Ma, W.H., Zhang, M.S., and Lu, Z.H., Phys. Stat. Sol. (a) 166, 811 (1998).3.0.CO;2-X>CrossRefGoogle Scholar
24.Cerdeira, F., Buchenauer, C.J., Pollak, F.H., and Cardona, M., Phys. Rev. B 5, 580 (1972).CrossRefGoogle Scholar
25.Marshall, S.P. and Sokoloff, J.B., Phys. Rev. B 44, 619 (1991).CrossRefGoogle Scholar
26.Gamarnik, M. Ya., Phys. Stat. Sol. (b) 164, 107 (1991).CrossRefGoogle Scholar
27.Kubo, O., Ido, T., Yokoyama, H., and Koike, Y., J. Appl. Phys. 57, 4280 (1985).CrossRefGoogle Scholar
28.Rezlescu, L., Rezlescu, E., Popa, P.D., and Rezlescu, N., J. Magn. Magn. Mater. 193, 288 (1999).CrossRefGoogle Scholar
29.Haneda, K. and Morrish, A.H., IEEE Trans. Magn. 25, 2597 (1989).CrossRefGoogle Scholar
30.Kojima, H., Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, edited by Wohlfarth, E.P. (North-Holland, The Netherlands, 1982), p. 335.Google Scholar
31.Kojima, H., Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substances, edited by Wohlfarth, E.P. (North-Holland, The Netherlands, 1982), p. 323.Google Scholar
32.Gorter, E.W., Proc. IEEE 104B, 255 (1957).Google Scholar
33.Anderson, P.W., Phys. Rev. 79, 350 (1950).CrossRefGoogle Scholar
34.Anderson, P.W., Phys. Rev. 79, 705 (1950).CrossRefGoogle Scholar
35.Grill, A. and Haberey, F., Appl. Phys. 3, 131 (1974).CrossRefGoogle Scholar
36.Isalgué, A., Labarta, A., Tejada, J., and Obradors, X., Appl. Phys. A 38, 3063 (1985).Google Scholar