Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T07:00:34.708Z Has data issue: false hasContentIssue false

Raman and luminescence spectroscopy study of europium doped zirconia

Published online by Cambridge University Press:  31 January 2011

James Ovenstone*
Affiliation:
Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802
Robert Withnall
Affiliation:
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
Jack Silver
Affiliation:
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A Raman spectrometer was used to probe the structure and luminescence of a range of europium-doped zirconia phosphors prepared by different routes. We have demonstrated that the synthesis method and precursor type have a strong influence on the structure and luminescence of the final phosphor product. Raman spectroscopy has also demonstrated the presence of local order around the dopant ions that is not apparent in x-ray diffraction (XRD) and corresponds with changes in luminescence. As europium concentration is increased from 1 mol% to 20 mol%, the long range structure (from XRD) changes from tetragonal to cubic. Raman spectroscopy, however, shows that the 1 mol% material has a localized structure similar to the monoclinic undoped zirconia. This localized symmetry can explain the differences observed previously in emission spectra.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kano, T.: Phosphor Handbook CRC Press Boca Raton 1998 Chap. 3Google Scholar
2Ozawa, L.: Cathodoluminescence Theory and Applications VCH Germany 1990 Chap. 4Google Scholar
3Kottaisamy, M., Jeyakumar, D., Jagannathan, R.Rao, M. Mohan: Yttrium oxide:Eu3+ red phosphor by self-propagating high temperature synthesis. Mater. Res. Bull. 31, 1013 1996CrossRefGoogle Scholar
4Foster, A.S., Sulimov, V.B., Gejo, F.L., Shluger, A.L.Nieminen, R.M.: Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B 64, 224108 2001CrossRefGoogle Scholar
5Curtis, C.E.: Development of zirconia resistant to thermal shock. J. Am. Ceram. Soc. 30, 180 1947CrossRefGoogle Scholar
6Chen, L., Liu, Y.Li, Y.: Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloys Compd. 381, 266 2004CrossRefGoogle Scholar
7Denkewicz, R.P. Jr., Huisen, K.S. TenAdair, J.H.: Hydrothermal crystallization kinetics of m-ZrO2 and t-ZrO2. J. Mater. Res. 5, 2696 1990CrossRefGoogle Scholar
8Kim, D.J., Jang, J.W.Lee, H.L.: Effect of tetravalent dopants on raman spectra of tetragonal zirconia. J. Am. Ceram. Soc. 80, 1453 1997CrossRefGoogle Scholar
9De la Rosa-Cruz, E., Diaz-Torres, L.A., Salas, P., Rodriguez, R.A., Kumar, G.A., Meneses, M.A., Mosino, J.F., Hernandez, J.M.Barbosa-Garcia, O.: Luminescent properties and energy transfer in ZrO2:Sm3+ nanocrystals. J. Appl. Phys. 94, 3509 2003CrossRefGoogle Scholar
10Reisfeld, R., Zelner, M.Patra, A.: Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films. J. Alloys Compd. 300–301, 147 2000CrossRefGoogle Scholar
11Gutzov, S.Lerch, M.: Optical properties of europium containing zirconium oxyhydrides. Opt. Mater. 24, 547 2003CrossRefGoogle Scholar
12Zhang, H., Fu, X., Niu, S., Sun, G.Xin, Q.: Synthesis and characterization of ZrO2:Eu nanopowder by EDTA complexing sol-gel method. Mater. Chem. Phys. 91, 361 2005CrossRefGoogle Scholar
13Quan, Z.W., Wang, L.S.Lin, J.: Synthesis and characterization of spherical ZrO2:Eu3+ phosphors by spray pyrolysis process. Mater. Res. Bull. 40, 810 2005CrossRefGoogle Scholar
14Liu, H., Wang, L., Chen, S., Zou, B.Peng, Z.: Effect of annealing temperature on luminescence of Eu3+ ions doped nanocrystal zirconia. Appl. Surf. Sci. 253, 3872 2007Google Scholar
15Ehrhart, G., Ouazaoui, M., Capoen, B., Ferreiro, V., Mahio, R., Robbe, O.Turrell, S.: Effects of rare-earth concentration and heat-treatment on the structural and luminescence properties of europium-doped zirconia sol-gel planar waveguides. Opt. Mater. 29, 1723 2007CrossRefGoogle Scholar
16Ovenstone, J., Titler, P.J., Withnall, R.Silver, J.: A study of the effects of europium doping and calcination on the luminescence of titania phosphor materials. J. Phys. Chem. B 105, 7170 2001CrossRefGoogle Scholar
17Ovenstone, J., Titler, P.J., Withnall, R.Silver, J.: Luminescence in europium-doped titania: Part II. High concentration range of Eu3+. J. Mater. Res. 17, 2524 2002CrossRefGoogle Scholar
18Murtagh, M.T., Sigel, G.H. Jr., Fajaro, J.C., Edwards, B.C.Epstein, R.I.: Compositional investigation of Yb3+-doped heavy fluoride glasses for laser-inducted fluorescent cooling applications. J. Non-Cryst. Solids 256–257, 207 1999CrossRefGoogle Scholar
19Ovenstone, J., Withnall, R.Silver, J.: Investigation of luminescence in europium doped zirconia (unpublished).Google Scholar