Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T05:00:18.386Z Has data issue: false hasContentIssue false

Quantum-kinetic perspective on photovoltaic device operation in nanostructure-based solar cells

Published online by Cambridge University Press:  11 January 2018

Urs Aeberhard*
Affiliation:
IEK-5 Photovoltaik, Forschungszentrum Jülich, Jülich 52425, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The implementation of a wide range of high-efficiency solar cell concepts is based on nanostructures with configuration-tunable optoelectronic properties. On the other hand, effective nano-optical light-trapping concepts enable the use of ultra-thin absorber architectures. In both cases, the local density of electronic and optical states deviates strongly from that of a homogeneous bulk material. At the same time, nonlocal and coherent phenomena like tunneling or ballistic transport become increasingly relevant. As a consequence, the semiclassical, diffusive bulk picture may no longer be appropriate to describe the physics of such devices. In this review, we provide a quantum-kinetic perspective on photovoltaic device operation that reaches beyond the limits of the standard simulation models for bulk solar cells. Deviations from bulk physics are assessed in ultra-thin film and nanostructure-based solar cell architectures by comparing predictions of semiclassical models with those of a more fundamental description based on nonequilibrium quantum statistical mechanics.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sam Zhang

References

REFERENCES

Barnham, K. and Duggan, G.: A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67, 3490 (1990).Google Scholar
Green, M.A.: Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Prog. Photovoltaics 9, 123 (2001).Google Scholar
Green, M.A.: Potential for low dimensional structures in photovoltaics. Mater. Sci. Eng., B 74, 118 (2000).CrossRefGoogle Scholar
Marti, A., Cuadra, L., and Luque, A.: Partial filling of a quantum dot intermediate band for solar cells. IEEE Trans. Electron Devices 48, 2394 (2001).CrossRefGoogle Scholar
Conibeer, G., König, D., Green, M., and Guillemoles, J.: Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films 516, 6948 (2008).CrossRefGoogle Scholar
Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., and Efros, A.L.: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865 (2005).Google Scholar
Atwater, H.A. and Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).Google Scholar
Mokkapati, S. and Catchpole, K.R.: Nanophotonic light trapping in solar cells. J. Appl. Phys. 112, 101101 (2012).Google Scholar
Adams, J.G.J., Elder, W., Hill, G., Roberts, J.S., Barnham, K.W.J., and Ekins-Daukes, N.J.: Higher limiting efficiencies for nanostructured solar cells. Proc. SPIE 7597, 759705 (2010).Google Scholar
Aeberhard, U.: Simulation of nanostructure-based high-efficiency solar cells: Challenges, existing approaches, and future directions. IEEE J. Sel. Top. Quantum Electron. 19, 4000411 (2013).Google Scholar
Araújo, G., Martí, A., Ragay, F., and Wolter, J.: Efficiency of multiple quantum well solar cells. In Proceedings 12th European Photovoltaic Solar Energy Conference, Hill, R., Palz, W., and Helm, P., eds. (James & James, Amsterdam, the Netherlands, 1994); p. 1481.Google Scholar
Würfel, P.: The chemical potential of radiation. J. Phys. C: Solid State Phys. 15, 3967 (1982).Google Scholar
Rau, U.: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).Google Scholar
Henrickson, L.E.: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91, 6273 (2002).CrossRefGoogle Scholar
Naser, M.A., Deen, M.J., and Thompson, D.A.: Spectral function and responsivity of resonant tunneling and superlattice quantum dot infrared photodetectors using green’s function. J. Appl. Phys. 102, 083108 (2007).Google Scholar
Pereira, M.F. and Henneberger, K.: Microscopic theory for the influence of Coulomb correlations in the light-emission properties of semiconductor quantum wells. Phys. Rev. B 58, 2064 (1998).CrossRefGoogle Scholar
Lee, S-C. and Wacker, A.: Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002).Google Scholar
Kubis, T., Yeh, C., Vogl, P., Benz, A., Fasching, G., and Deutsch, C.: Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 79, 195323 (2009).Google Scholar
Steiger, S., Veprek, R.G., and Witzigmann, B.: Electroluminescence from a quantum-well LED using NEGF. In Proceedings of the 13th International Workshop on Computational Electronics (IWCE) (2009).Google Scholar
Stewart, D.A. and Leonard, F.: Energy conversion efficiency in nanotube optoelectronics. Nano Lett. 5, 219 (IEEE, Beijing, China, 2005).Google Scholar
Aeberhard, U. and Morf, R.H.: Microscopic nonequilibrium theory of quantum well solar cells. Phys. Rev. B 77, 125343 (2008).CrossRefGoogle Scholar
Aeberhard, U.: Theory and simulation of photogeneration and transport in Si–SiO x superlattice absorbers. Nanoscale Res. Lett. 6, 242 (2011).Google Scholar
Buin, A., Verma, A., and Saini, S.: Optoelectronic response calculations in the framework of k·p coupled to non-equilibrium Green’s functions for one-dimensional systems in the ballistic limit. J. Appl. Phys. 114, 033111 (2013).Google Scholar
Aeberhard, U.: Effective microscopic theory of quantum dot superlattice solar cells. Opt. Quantum Electron. 44, 133 (2012).Google Scholar
Berbezier, A. and Aeberhard, U.: Impact of nanostructure configuration on the photovoltaic performance of quantum-dot arrays. Phys. Rev. Appl. 4, 044008 (2015).CrossRefGoogle Scholar
Cavassilas, N., Gelly, C., Michelini, F., and Bescond, M.: Reflective barrier optimization in ultrathin single-junction GaAs solar cell. IEEE J. Photovolt. 5, 1621 (2015).Google Scholar
Aeberhard, U.: Simulation of ultrathin solar cells beyond the limits of the semiclassical bulk picture. IEEE J. Photovolt. 6, 654 (2016).Google Scholar
Aeberhard, U.: Theoretical investigation of direct and phonon-assisted tunneling currents in InAlGaAs/InGaAs bulk and quantum-well interband tunnel junctions for multijunction solar cells. Phys. Rev. B 87, 081302 (2013).Google Scholar
Aeberhard, U.: Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism. J. Comput. Electron. 10, 394 (2011).CrossRefGoogle Scholar
Kadanoff, L.P. and Baym, G.: Quantum Statistical Mechanics (Benjamin, Reading, MA, 1962).Google Scholar
Keldysh, L.: Diagram technique for nonequilibrium processes. J. Exp. Theor. Phys. 20, 1018 (1965).Google Scholar
Aeberhard, U.: Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions. Phys. Rev. B 84, 035454 (2011).Google Scholar
Aeberhard, U.: Quantum-kinetic theory of defect-mediated recombination in nanostructure-based photovoltaic devices. MRS Proceedings 1493, 91 (2013).Google Scholar
Aeberhard, U.: Nanostructure solar cells. In Series in Optics and Optoelectronics, Vol. 441, Piprek, J., ed. (CRC Press, Boca Raton, Florida, 2017), pp. 441474.Google Scholar
Wang, Z., White, T., and Catchpole, K.: Plasmonic near-field enhancement for planar ultra-thin photovoltaics. IEEE Photonics J. 5, 8400608 (2013).CrossRefGoogle Scholar
Llorens, J.M., Buencuerpo, J., and Postigo, P.A.: Absorption features of the zero frequency mode in an ultra-thin slab. Appl. Phys. Lett. 105, 231115 (2014).Google Scholar
Massiot, I., Colin, C., Péré-Laperne, N., Roca i Cabarrocas, P., Sauvan, C., Lalanne, P., Pelouard, J-L., and Collin, S.: Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells. Appl. Phys. Lett. 101(16), 163901 (2012).Google Scholar
Massiot, I., Colin, C., Sauvan, C., Lalanne, P., Roca i Cabarrocas, P., Pelouard, J-L., and Collin, S.: Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires. Opt. Express 21, A372 (2013).Google Scholar
Massiot, I., Vandamme, N., Bardou, N., Dupuis, C., Lemaitre, A., Guillemoles, J-F., and Collin, S.: Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics 1, 878 (2014).Google Scholar
Wang, X., Khan, M., Gray, J., Alam, M., and Lundstrom, M.: Design of GaAs solar cells operating close to the Shockley–Queisser limit. IEEE J. Photovolt. 3, 737 (2013).Google Scholar
Yang, W., Becker, J., Liu, S., Kuo, Y-S., Li, J-J., Landini, B., Campman, K., and Zhang, Y-H.: Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer. J. Appl. Phys. 115, 203105 (2014).Google Scholar
Vandamme, N., Hung-Ling, C., Gaucher, A., Behaghel, B., Lemaitre, A., Cattoni, A., Dupuis, C., Bardou, N., Guillemoles, J-F., and Collin, S.: Ultrathin GaAs solar cells with a silver back mirror. IEEE J. Photovolt. 5, 565 (2015).Google Scholar
Hirst, L.C., Yakes, M.K., Warner, J.H., Bennett, M.F., Schmieder, K.J., Walters, R.J., and Jenkins, P.P.: Intrinsic radiation tolerance of ultra-thin GaAs solar cells. Appl. Phys. Lett. 109, 033908 (2016).CrossRefGoogle Scholar
Aeberhard, U.: Photon Green's functions for a consistent theory of absorption and emission in nanostructure-based solar cell devices. Opt. Quantum Electron. 46, 791 (2014).Google Scholar
Pieters, B., Krc, J., and Zeman, M.: Advanced numerical simulation tool for solar cells—ASA5. In Conference Record of the 4th World Conference on Photovoltaic Energy Conversion (IEEE, Honolulu, Hawaii, 2006), pp. 15141516.Google Scholar
Aeberhard, U. and Rau, U.: Microscopic perspective on photovoltaic reciprocity in ultrathin solar cells. Phys. Rev. Lett. 118, 247702 (2017).Google Scholar
Aeberhard, U.: Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells. Appl. Phys. Lett. 109, 033906 (2016).Google Scholar
Aeberhard, U.: Simulation of ultrathin solar cells beyond the limits of the semiclassical bulk picture. IEEE J. Photovoltaics 6, 654 (2016).Google Scholar
Ekins-Daukes, N.J., Barnes, J.M., Barnham, K.W.J., Connolly, J.P., Mazzer, M., Clark, J.C., Grey, R., Hill, G., Pate, M.A., and Roberts, J.S.: Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells. Sol. Energy Mater. Sol. Cells 68, 71 (2001).Google Scholar
Ekins-Daukes, N.J., Barnham, K.W.J., Connolly, J.P., Roberts, J.S., Clark, J.C., Hill, G., and Mazzer, M.: Strain-balanced GaAsP/InGaAs quantum well solar cells. Appl. Phys. Lett. 75, 4195 (1999).Google Scholar
Aeberhard, U.: Spectral properties of photogenerated carriers in quantum well solar cells. Sol. Energy Mater. Sol. Cells 94, 1897 (2010).CrossRefGoogle Scholar
Aeberhard, U.: Microscopic theory and numerical simulation of quantum well solar cells. Proc. SPIE 7597, 759702 (2010).CrossRefGoogle Scholar
Wang, Y.P., Watanabe, K., Wen, Y., Sugiyama, M., and Nakano, Y.: Strain-balanced InGaAs/GaAsP superlattice solar cell with enhanced short-circuit current and a minimal drop in open-circuit voltage. Appl. Phys. Express 5, 1 (2012).Google Scholar
Aeberhard, U.: Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture. J. Photonics Energy 4, 042099 (2014).Google Scholar
Aeberhard, U.: Quantum-kinetic theory of steady-state photocurrent generation in thin films: Coherent versus incoherent coupling. Phys. Rev. B 89, 115303 (2014).Google Scholar
Nelson, J., Paxman, M., Barnham, K.W.J., Roberts, J., and Button, C.: Steady state carrier escape rates from single quantum wells. IEEE J. Quantum Electron. 29, 1460 (1993).CrossRefGoogle Scholar
Berbezier, A. and Aeberhard, U.: Impact of Nanostructure configuration on the photovoltaic performance of quantum-dot arrays. Phys. Rev. Applied 4, 044008 (2015).CrossRefGoogle Scholar
Nozik, A.: Quantum dot solar cells. Phys. E 14, 115 (2002).Google Scholar
Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008).Google Scholar
Nozik, A.J., Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., and Johnson, J.C.: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873 (2010).Google Scholar
Jiang, C-W. and Green, M.A.: Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006).Google Scholar
Conibeer, G., Green, M., Cho, E-C., König, D., Cho, Y-h., Fangsuwannarak, T., Scardera, G., Pink, E., Huang, Y., Puzzer, T., Huang, S., Song, D., Flynn, C., Park, S., Hao, X., and Mansfield, D.: Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748 (2008).Google Scholar
Ding, K., Aeberhard, U., Astakhov, O., Köhler, F., Beyer, W., Finger, F., Carius, R., and Rau, U.: Silicon quantum dot formation in SiC/SiO x hetero-superlattices. Energy Procedia 10, 249 (2011).Google Scholar