Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T00:12:01.516Z Has data issue: false hasContentIssue false

Quantitative evaluation of indentation-induced densification in glass

Published online by Cambridge University Press:  01 December 2005

Satoshi Yoshida*
Affiliation:
Laboratoire de Rescherche en Mécanique Appliquée de l'Université de Rennes 1, FRE-CNRS 2717, 35042 Rennes cedex, France
Jean-Christophe Sanglebœuf
Affiliation:
Laboratoire de Rescherche en Mécanique Appliquée de l'Université de Rennes 1, FRE-CNRS 2717, 35042 Rennes cedex, France
Tanguy Rouxel
Affiliation:
Laboratoire de Rescherche en Mécanique Appliquée de l'Université de Rennes 1, FRE-CNRS 2717, 35042 Rennes cedex, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To estimate the ratio of densification to Vickers indentation volume, three-dimensional images of Vickers indentations on several glasses, including silicate glasses and bulk metallic glass (BMG), were obtained before and after annealing using an atomic force microscope. Large volume recovery of Vickers indentation by annealing was observed for all glasses but BMG. Following previous studies, this recovered volume almost corresponded to the densified volume under a Vickers indenter, and the compositional dependence of densification was discussed. The ratios of densification to the total indentation volume for silica and soda-lime glasses were 92% and 61%, respectively. It was concluded that densification was a general property for silicate glasses and that the ratios of densification to the total indentation volume for all the glasses correlated well with Poisson’s ratios of the glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Peter, K.W.: Densification and flow phenomena of glass in indentation experiments. J. Non-Cryst. Solids 5, 103 (1970).Google Scholar
2.Arora, A., Marshall, D.B. and Lawn, B.R.: Indentation deformation/fracture of normal and anomalous glasses. J. Non-Cryst. Solids 31, 415 (1979).CrossRefGoogle Scholar
3.Hagan, J.T.: Shear deformation under pyramidal indentations in soda-lime glass. J. Mater. Sci. 15, 1417 (1980).CrossRefGoogle Scholar
4.Chiang, S.S., Marshall, D.B. and Evans, A.G.: The response of solids to elastic/plastic indentation I. Stresses and residual stresses. J. Appl. Phys. 53, 298 (1982).CrossRefGoogle Scholar
5.Yoffe, E.H.: Elastic stress fields causes by indenting brittle materials. Philos. Mag. A 46, 617 (1982).CrossRefGoogle Scholar
6.Cook, R.F. and Pharr, G.M.: Direct observation of indentation cracking in glass and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).Google Scholar
7.Ernsberger, F.M.: Role of densification in deformation of glasses under point loading. J. Am. Ceram. Soc. 51, 545 (1968).CrossRefGoogle Scholar
8.Kurkjian, C.R., Kammlott, G.W. and Chaudhri, M.M.: Indentation behavior of soda-lime silica glass, fused silica, and single-crystal quartz at liquid-nitrogen temperature. J. Am. Ceram. Soc. 78, 737 (1995).Google Scholar
9.Hillig, W.B.: Concerning the creation and stability of pyramidal hardness impression on glass, in Proceedings of VIth International Congress on Glass, Washington, July 8–14, 1962 (Am. Ceram. Soc., Westerville, OH, 1963), p. 51.Google Scholar
10.Neely, J.E. and Mackenzie, J.D.: Hardness and low-temperature deformation of silica glass. J. Mater. Sci. 3, 603 (1968).CrossRefGoogle Scholar
11.Yoshida, S., Isono, S., Matsuoka, J. and Soga, N.: Shrinkage behavior of Knoop indentations in silica and soda-lime-silica glasses. J. Am. Ceram. Soc. 84, 2141 (2001).CrossRefGoogle Scholar
12.Mackenzie, J.D.: High-pressure effects on oxide glass: II. Subsequent heat treatment. J. Am. Ceram. Soc. 46, 470 (1963).Google Scholar
13.He, Y., Schwarz, R.B. and Archuleta, J.I.: Bulk glass formation in the Pd–Ni–P system. Appl. Phys. Lett. 69, 1861 (1996).Google Scholar
14.Baron, B., Chartier, T., Rouxel, T., Verdier, P. and Laurent, Y.: SiC particle reinforced oxynitride glass—Processing and mechanical properties. J. Eur. Ceram. Soc. 17, 773 (1997).CrossRefGoogle Scholar
15.Lambson, E.F., Lambson, W.A., Macdonald, J.E., Gibbs, M.R.J., Saunders, G.A. and Turnbull, D.: Elastic behavior and vibrational anharmonicity of a bulk Pd40Ni40P20 metallic glass. Phys. Rev. B 33, 2380 (1986).Google Scholar
16.Walls, M.G., Chaudhri, M.M. and Tang, T.B.: STM profilometry of low-load Vickers indentations in a silicon crystal. J. Phys.: D 25, 500 (1992).Google Scholar
17.Shen, J., Green, D.J., Tressler, R.E. and Shelleman, D.L.: Stress relaxation of a soda lime silicate glass below the glass transition temperature. J. Non-Cryst. Solids 324, 277 (2003).CrossRefGoogle Scholar
18.Hetherington, G., Jack, K.H. and Kennedy, J.C.: The viscosity of vitreous silica. Phys. Chem. Glasses 5, 130 (1964).Google Scholar
19.Agarwal, A. and Tomozawa, M.: Surface and bulk structural relaxation kinetics of silica glass. J. Non-Cryst. Solids 209, 264 (1997).Google Scholar
20.Brawer, S.A. and White, W.B.: Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates. J. Chem. Phys. 63, 2421 (1975).CrossRefGoogle Scholar
21.Kitamura, N., Fukumi, K., Mizoguchi, H., Makihara, M., Higuchi, A., Ohno, N. and Fukunaga, T.: High pressure densification of lithium silicate glasses. J. Non-Cryst. Solids 274, 244 (2000).CrossRefGoogle Scholar
22.Kase, K. and Rowcliffe, D.J.: Nanoindentation method foe measuring residual stress in brittle materials. J. Am. Ceram. Soc. 86, 811 (2003).CrossRefGoogle Scholar
23.Kase, K., Tehler, M. and Bergman, B.: Contact residual stress relaxation in soda-lime glass Part 1. Measurement using nanoindentation. J. Euro. Ceram. Soc. (in press).Google Scholar
24.Wang, L.M., Wang, W.H., Wang, R.J., Zhan, Z.J., Dai, D.Y., Sun, L.L. and Wang, W.K.: Ultrasonic investigation of Pd39Ni10Cu30P21 bulk metallic glass upon crystallization. Appl. Phys. Lett. 77, 1147 (2000).Google Scholar
25.Wang, L.M., Zhan, Z.J., Liu, J., Sun, L.L., Li, G. and Wang, W.K.: Compression behavior of Pd39Ni10Cu30P21 bulk metallic glass up to 23.5 GPa. J. Phys.: Condens. Matter 13, 5743 (2001).Google Scholar
26.Suzuki, K., Benino, Y., Fujiwara, T. and Komatsu, T.: Densification energy during nanoindentation of silica glass. J. Am. Ceram. Soc. 85, 3102 (2002).Google Scholar
27.Bridgman, P.W. and Simon, I.: Effects of very high pressures on glass. J. Appl. Phys. 24, 405 (1953).CrossRefGoogle Scholar
28.Mackenzie, J.D.: High-pressure effects on oxide glasses: I. Densification in rigid state. J. Am. Ceram. Soc. 46, 461 (1963).Google Scholar
29.Cohen, H.M. and Roy, R.: Effects of ultrahigh pressures on glass. J. Am. Ceram. Soc. 44, 523 (1961).CrossRefGoogle Scholar
30.Rouxel, T., Sanglebœuf, J-C., Moysan, C. and Truffin, B.: Indentation topometry in glasses by atomic force microscopy. J. Non-Cryst. Solids 344, 26 (2004).Google Scholar
31.Yoshida, S., Sanglebœuf, J-C., and Rouxel, T. (unpublished data).Google Scholar