Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:50:33.220Z Has data issue: false hasContentIssue false

Quantitative Analysis of Electromigration Damage in Al-based Conductor Lines

Published online by Cambridge University Press:  31 January 2011

O. Kraft
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität, 70174 Stuttgart, Germany
J. E. Sanchez Jr
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität, 70174 Stuttgart, Germany
M. Bauer
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität, 70174 Stuttgart, Germany
E. Arzt
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität, 70174 Stuttgart, Germany
Get access

Extract

Electromigration damage in Al-based interconnects with three compositions (pure Al, Al–1%Si–0.5%Cu, and Al–2%Cu) was studied quantitatively. Using scanning electron microscopy, the spacings between more than 1000 voids and hillocks were measured. The distribution of the spacings was found to be a function of the composition, the applied current density, and the linewidth. The measurements confirm the existence of a threshold product of current density and diffusion length. In particular, a dependence of this threshold product on the Cu content was found. The results of the analysis show that there are clear correlations between the details of the microscopic damage processes and the lifetime of the conductor lines.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hummel, R. E., Int. Mat. Rev. 39, 97 (1994).CrossRefGoogle Scholar
2.Cho, J. and Thompson, C. V., Appl. Phys. Lett. 54, 2577 (1989).CrossRefGoogle Scholar
3.Dreyer, M. L. and Varker, C. J., Appl. Phys. Lett. 60, 15 (1992).CrossRefGoogle Scholar
4.Kirchheim, R. and Kaeber, U., J. Appl. Phys. 70, 172 (1991).CrossRefGoogle Scholar
5.Arzt, E. and Nix, W. D., J. Mater. Res. 6, 731 (1991).CrossRefGoogle Scholar
6.Joo, Y-C. and Thompson, C. V., J. Appl. Phys. 76, 7339 (1994).CrossRefGoogle Scholar
7.Korhonen, M. A., Børgesen, P., Brown, D. D., and Li, C-Y., J. Appl. Phys. 74, 4995 (1993).CrossRefGoogle Scholar
8.Blech, I. A. and Herring, C., Appl. Phys. Lett. 29, 131 (1976).CrossRefGoogle Scholar
9.Blech, I. A., J. Appl. Phys. 47, 1203 (1976).CrossRefGoogle Scholar
10.Blech, I. A. and Tai, K. L., Appl. Phys. Lett. 30, 387 (1977).CrossRefGoogle Scholar
11.Kinsbron, E., Appl. Phys. Lett. 36, 968 (1980).CrossRefGoogle Scholar
12.Vaidya, S., Sheng, T. T., and Sinha, A. K., Appl. Phys. Lett. 36, 464 (1980).CrossRefGoogle Scholar
13.Atakov, E. M., Clement, J. J., and Miner, B., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), pp. 133139.Google Scholar
14.Ross, C. A. and Evetts, J. E., Scripta Metall. 21, 1077 (1987).CrossRefGoogle Scholar
15.Besser, P. R., Bader, S., Venkatraman, R., and Bravman, J. C., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), pp. 255260.Google Scholar
16.Bader, S., Flinn, P. A., Arzt, E., and Nix, W. D., J. Mater. Res. 9, 318 (1994).CrossRefGoogle Scholar
17.Kuschke, W-M. and Arzt, E., Appl. Phys. Lett. 64, 1097 (1994).CrossRefGoogle Scholar
18.Bader, S., Kalaugher, E. M., and Arzt, E., Thin Solid Films 263, 175 (1995).CrossRefGoogle Scholar
19.Sanchez, J. E., Jr., Microstructure and Electromigration Effects in Al and Al Alloy Thin Films, Ph.Thesis, D., University of California, Berkeley, CA (1991).Google Scholar
20.Flinn, P. A., Gardner, D. S., and Nix, W. D., IEEE Trans. Electron Devices ED–34 689 (1987).Google Scholar
21.Flinn, P. A. and Waychunas, G. A., J. Vac. Sci. Technol. B 6, 1749 (1988).CrossRefGoogle Scholar
22.Burges, U., Helneder, H., Körner, H., Schroeder, H., and Schilling, W., in Materials Reliability in Microelectronics IV, edited by P., Bøgesen, Coburn, J. C., Sanchez, J. E., Jr., Rodbell, K. P., and Filter, W. F., (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), pp. 247253.Google Scholar
23.Gardner, D. S. and Flinn, P. A., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), pp. 6976.Google Scholar
24.Kraft, O. and Artz, E., unpublished.Google Scholar
25.Shatzkes, M. and Lloyd, J. R., J. Appl. Phys. 59, 3890 (1986).CrossRefGoogle Scholar
26.Kraft, O., Untersuchung und Modellierung der Elektromigrationssch ädigung in miniaturisierten Leiterbahnen, Ph. D. Thesis, Universität Stuttgart, Germany (1995).Google Scholar
27.Li, Z., Bauer, C. L., Mahajan, S., and Milnes, A. G., J. Appl. Phys. 72, 1 (1992).Google Scholar
28.Tu, K. N., Phys. Rev. B 45, 1409 (1992).CrossRefGoogle Scholar
29.Kim, C. and Morris, J. W., Jr., J. Appl. Phys. 72, 1837 (1992).CrossRefGoogle Scholar
30.Kim, C. and Morris, J. W., Jr., Appl. Phys. 73, 4885 (1993).CrossRefGoogle Scholar
31.Sanchez, J. E., Jr., McKnelly, L. T., and Morris, J. W., Jr., J. El. Mater. 19, 1213 (1990).CrossRefGoogle Scholar
32.Besser, P. R., Madden, M., and Flinn, P. A., J. Appl. Phys. 72, 3792 (1992).CrossRefGoogle Scholar
33.Kraft, O., Bader, S., Sanchez, J. E. Jr, and Arzt, E., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), pp. 199204.Google Scholar
34.Arzt, E., Kraft, O., Nix, W. D., and Sanchez, J. E., J. Appl. Phys. 76, 1563 (1994).CrossRefGoogle Scholar
35.Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 2063 (1995).CrossRefGoogle Scholar
36.Flinn, P. A. and Chiang, C., J. Appl. Phys. 67, 2927 (1990).CrossRefGoogle Scholar
37.Penney, R. V., J. Phys. Chem. Solids 25, 335 (1964).CrossRefGoogle Scholar
38.Wever, H., Elektro-und Thermotransport in Metallen (J. A. Barth, Leipzig, Germany, 1973), p. 170.Google Scholar
39.Smith, D. A., Small, M. B., and Garratt-Reed, A. J., in Materials Reliability in Microelectronics IV, edited by P., Børgesen, Coburn, J. C., Sanchez, J. E., Jr., Rodbell, K. P., and Filter, W. F., (Mater Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), pp. 313318.Google Scholar
40.Nogami, T. and Nemoti, T., presented at the Third International Workshop on Stress-Induced Phenomena in Metallizations, Standford, CA (1995).Google Scholar
41.Thompson, C. V., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), pp. 183194.Google Scholar
42.Hu, C-K., Ho, P. S., and Small, M. B., J. Appl. Phys. 72, 291293 (1992).CrossRefGoogle Scholar