Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T15:36:03.116Z Has data issue: false hasContentIssue false

Pristine graphene quantum dots for detection of copper ions

Published online by Cambridge University Press:  25 July 2014

Xiaofeng Liu
Affiliation:
Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Wei Gao
Affiliation:
Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Xuemei Zhou
Affiliation:
Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Yuanyuan Ma*
Affiliation:
Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To selectively detect Cu2+ ions is very important for controlling daily intake of Cu2+ ions and monitoring numerous biological processes. Fluorescence spectroscopic technique is a useful one for detection of copper ions. Previous methods always involve the use of metal Cd-based quantum dots (QDs), which suffer to the photobleaching and subsequent release of toxic metal ions. Herein, a simple method has been developed to detect Cu2+ ions by using pristine graphene QDs. Graphene QDs are synthesized by chemical oxidation of pitch graphite fibers. Our results indicate the photoluminescence (PL) of as-synthesized graphene QDs could be quenched by a group of metal ions while adding biothiol cysteine can only cause the significant recovery of the PL of graphene QDs quenched by Cu2+ ions. Our approach provides an easy and environmental friendly method for detection of Cu2+ ions and has the potential for future practical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kramer, R.: Fluorescent chemosensors for Cu2+ ions: Fast, selective, and highly sensitive. Angew. Chem., Int. Ed. 37, 772 (1998).Google Scholar
Georgopoulos, P.G., Roy, A., Yonone-Lioy, M.J., Opiekun, R.E., and Lioy, P.J.: Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health, B 4, 341 (2001).CrossRefGoogle ScholarPubMed
Gaggelli, E., Kozlowski, H., Valensin, D., and Valensin, G.: Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995 (2006).Google Scholar
Jung, H.S., Kwon, P.S., Lee, J.W., Kim, J.I., Hong, C.S., Kim, J.W., Yan, S., Lee, J.Y., Lee, J.H., Joo, T., and Kim, J.S.: Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells. J. Am. Chem. Soc. 131, 2008 (2009).Google Scholar
Chan, W.C.W., Maxwell, D.J., Gao, X.H., Bailey, R.E., Han, M.Y., and Nie, S.M.: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40 (2002).Google Scholar
Basabe-Desmonts, L., Reinhoudt, D.N., and Crego-Calama, M.: Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 36, 993 (2007).CrossRefGoogle ScholarPubMed
Gill, R., Zayats, M., and Willner, I.: Semiconductor quantum dots for bioanalysis. Angew. Chem., Int. Ed. 47, 7602 (2008).Google Scholar
Freeman, R. and Willner, I.: Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 41, 4067 (2012).Google Scholar
Zhang, J., Li, B., Zhang, L.M., and Jiang, H.: An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chem. Commun. 48, 4860 (2012).Google Scholar
Xie, H.Y., Liang, H.G., Zhang, Z.L., Liu, Y., He, Z.K., and Pang, D.W.: Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim. Acta, Part A 60, 2527 (2004).Google Scholar
Fernandez-Arguelles, M.T., Jin, W.J., Costa-Fernandez, J.M., Pereiro, R., and Sanz-Medel, A.: Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal. Chim. Acta 549, 20 (2005).Google Scholar
Chan, Y.H., Chen, J.X., Liu, Q.S., Wark, S.E., Son, D.H., and Batteas, J.D.: Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Anal. Chem. 82, 3671 (2010).Google Scholar
Wu, C.S., Oo, M.K.K., and Fan, X.D.: Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4, 5897 (2010).Google Scholar
Wang, G.L., Dong, Y.M., and Li, Z.J.: Metal ion (silver, cadmium and zinc ions) modified CdS quantum dots for ultrasensitive copper ion sensing. Nanotechnology 22, 085503 (2011).CrossRefGoogle ScholarPubMed
Guo, C.X., Wang, J.L., Cheng, J., and Dai, Z.F.: Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition. Biosens. Bioelectron. 36, 69 (2012).Google Scholar
Yang, P., Zhao, Y., Lu, Y., Xu, Q.Z., Xu, X.W., Dong, L., and Yu, S.H.: Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: A fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano 5, 2147 (2011).Google Scholar
Shen, Y.Y., Li, L.L., Lu, Q., Ji, J., Fei, R., Zhang, J.R., Abdel-Halim, E.S., and Zhu, J.J.: Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS–SiO2 quantum dots and their application in the detection of Cu(II). Chem. Commun. 48, 2222 (2012).CrossRefGoogle ScholarPubMed
Sung, T.W. and Lo, Y.L.: Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens. Actuator, B Chem. 165, 119 (2012).Google Scholar
Hardman, R.: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165 (2006).CrossRefGoogle ScholarPubMed
Lewinski, N., Colvin, V., and Drezek, R.: Cytotoxicity of nanoparticles. Small 4, 26 (2008).Google Scholar
Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., and Lead, J.R.: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825 (2008).CrossRefGoogle ScholarPubMed
Reiss, P., Protiere, M., and Li, L.: Core/shell semiconductor nanocrystals. Small 5, 154 (2009).Google Scholar
Donega, C.M.: Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512 (2011).Google Scholar
Fan, J.Y. and Chu, P.K.: Group IV nanoparticles: Synthesis, properties, and biological applications. Small 6, 2080 (2010).Google Scholar
Baker, S.N. and Baker, G.A.: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 49, 6726 (2010).Google Scholar
Liu, S., Tian, J.Q., Wang, L., Zhang, Y.W., Qin, X.Y., Luo, Y.L., Asiri, A.M., Al-Youbi, A.O., and Sun, X.P.: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037 (2012).CrossRefGoogle Scholar
Qu, Q., Zhu, A., Shao, X., Shi, G., and Tian, Y.: Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 48, 5473 (2012).Google Scholar
Wang, F., Gu, Z., Lei, W., Wang, W., Xia, X., and Hao, Q.: Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Sens. Actuators, B Chem. 190, 516 (2014).Google Scholar
Cao, L., Meziani, M.J., Sahu, S., and Sun, X.P.: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).CrossRefGoogle ScholarPubMed
Yan, X., Cui, X., Li, B.S., and Li, L.S.: Large solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869 (2010).CrossRefGoogle ScholarPubMed
Zhuo, S.J., Shao, M.W., and Lee, S.T.: Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 6, 1059 (2012).Google Scholar
Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., and Cand, S.: Luminescent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960 (2011).Google Scholar
Williams, K.J., Nelson, C.A., Yan, X., Li, L.S., and Zhu, X.Y.: Hot electron injection from graphene quantum dots to TiO2 . ACS Nano 7, 1388 (2013).CrossRefGoogle ScholarPubMed
Li, Y., Zhao, Y., Cheng, H.H., Hu, Y., Shi, G.Q., Dai, L.M., and Qu, L.T.: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15 (2012).Google Scholar
Tang, L.B., Ji, R.B., Cao, X.K., Lin, J.Y., Jiang, H.X., Li, X.M., Teng, K.S., Luk, C.M., Zeng, S.J., Hao, J.H., and Lau, S.P.: Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102 (2012).Google Scholar
Pan, D.Y., Zhang, J.C., Li, Z., and Wu, M.H.: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734 (2010).Google Scholar
Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero-Aburto, R., Ge, L.H., Song, L., Alemany, L.B., Zhan, X.B., Gao, G.H., Vithayathil, S.A., Kaipparettu, B.A., Marti, A.A., Hayashi, T., Zhu, J.J., and Ajayan, P.M.: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844 (2012).Google Scholar
Liu, R.L., Wu, D.Q., Feng, X.L., and Mullen, K.: Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 133, 15221 (2011).CrossRefGoogle ScholarPubMed
Lee, J., Kim, K., Park, W.I., Kim, B.H., Park, J.H.. Kim, T.H., Bong, S., Kim, C.H., Chae, G., Jun, M., Hwang, Y., Jung, Y.S., and Jeon, S.: Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett. 12, 6078 (2012).Google Scholar
Luo, Z.T., Lu, Y., Somers, L.A., and Johnson, A.T.C.: High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131, 898 (2009).Google Scholar
Sun, Y.P., Zhou, B., Lin, Y., Wang, W., Fernando, K.A.S., Pathak, P., Meziani, M.J., Harruff, B. A., Wang, X., Wang, H.F., Luo, P.J.G., Yang, H., Kose, M.E., Chen, B.L., Veca, L.M., and Xie, S.Y.: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 126, 7756 (2006).Google Scholar
Yang, S.T., Cao, L., Luo, P.G.J., Lu, F.S., Wang, X., Wang, H.F., Meziani, M.J., Liu, Y.F., Qi, G., and Sun, X.P.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009).Google ScholarPubMed
Liu, H.B., Zhu, H.N., Eggers, D.K., Nersissian, A.M., Faull, K.F., Goto, J.J., Ai, J.Y., Sanders-Loehr, J., Gralla, E.B., and Valentine, J.S.: Copper (2+) binding to the surface residue cysteine 111 of His46Arg human copper-zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. Biochemistry 39, 8125 (2000).Google Scholar
Rigo, A., Corazza, A., Paolo, M.L., Rossetto, M., Ugolini, R., and Scarpa, M.: Interaction of copper with cysteine: Stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 98, 1495 (2004).Google Scholar
Supplementary material: File

Liu et al. supplementary material

Supplementary figures

Download Liu et al. supplementary material(File)
File 224.8 KB