Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T07:36:54.389Z Has data issue: false hasContentIssue false

Printing composite nanofilaments for use in a simple and low-cost 3D pen

Published online by Cambridge University Press:  20 April 2020

Francisca Pereira de Araujo
Affiliation:
LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI—Federal University of Piaui, Teresina, Piauí 64049-550, Brazil
Igor Tadeu Silva Batista
Affiliation:
Research Center on Biotechnology—Uniara, Araraquara, São Paulo 14801-340, Brazil
Francílio Carvalho de Oliveira
Affiliation:
Universidade Estácio, Teresina, Piauí 64 046-700, Brazil
Layane Rodrigues de Almeida
Affiliation:
LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI—Federal University of Piaui, Teresina, Piauí 64049-550, Brazil
Guilherme de Castro Brito
Affiliation:
Universidade Estácio, Teresina, Piauí 64 046-700, Brazil
Hernane da Silva Barud
Affiliation:
Research Center on Biotechnology—Uniara, Araraquara, São Paulo 14801-340, Brazil
Dalton Dittz
Affiliation:
Biochemistry and Pharmacology Department, Federal University of Piauí, Teresina, Piauí 64049-550, Brazil
Edson Cavalcanti Silva-Filho
Affiliation:
LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI—Federal University of Piaui, Teresina, Piauí 64049-550, Brazil
Josy Anteveli Osajima*
Affiliation:
LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI—Federal University of Piaui, Teresina, Piauí 64049-550, Brazil
Anderson Oliveira Lobo*
Affiliation:
LIMAV—Interdisciplinary Laboratory for Advanced Materials, UFPI—Federal University of Piaui, Teresina, Piauí 64049-550, Brazil
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this work, filament based on ɛ-polycaprolactone (PCL) and containing the bioactive ceramics nanohydroxyapatite (nHap) and Laponite® (Lap) was prepared by the extrusion process. To obtain the material, a mass ratio of 89:10:1 (PCL:nHap:Lap) was used, and structural and morphological characterization was realized. In addition, cytotoxicity (using Allium cepa bulbs) and viability tests on L929 cells also were performed. The results showed that filament (diameter of 1.79 ± 0.17 mm) presented a good dispersion of nHap and Lap into polymeric matrices. Fourier transform infrared spectroscopy identified typical bands at 1720, 1091, and 1045 cm−1 addressed to PCL and nHAp, In addition, Lap was identified through dispersive energy system and X-ray diffraction analyses. All filaments did not exhibit cytotoxic effects.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

References

Maroulakos, M., Kamperos, G., Tayebi, L., Halazonetis, D., and Ren, Y.: Applications of 3D printing on craniofacial bone repair: A systematic review. J. Dent 80, 1 (2019).CrossRefGoogle ScholarPubMed
Zadpoor, A.A.: Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater. 85, 41 (2019).CrossRefGoogle ScholarPubMed
Hedayati, R., Ahmadi, S.M., Lietaert, K., Pouran, B., Li, Y., Weinans, H., Rans, C.D., and Zadpoor, A.A.: Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 79, 254 (2018).CrossRefGoogle ScholarPubMed
Oladapo, B.I., Zahedi, S.A., and Adeoye, A.O.M.: 3D printing of bone scaffolds with hybrid biomaterials. Composites, Part B 158, 428 (2019).CrossRefGoogle Scholar
Wang, W., Huang, B., Byun, J.J., and Bártolo, P.: Assessment of PCL/carbon material scaffolds for bone regeneration. J. Mech. Behav. Biomed. Mater. 93, 52 (2019).CrossRefGoogle ScholarPubMed
Du, Y., Liu, H., Shuang, J., Wang, J., Ma, J., and Zhang, S.: Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Colloids Surf., B 135, 81 (2015).CrossRefGoogle ScholarPubMed
Ortega, Z., Alemán, M.E., Benítez, A.N., and Monzón, M.D.: Theoretical-experimental evaluation of different biomaterials for parts obtaining by fused deposition modeling. Measurement 89, 137 (2016).CrossRefGoogle Scholar
Friedrich, K.: Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 1, 3 (2018).Google Scholar
Derby, B.: Printing and prototyping of tissues and scaffolds. Science 338, 921 (2012).CrossRefGoogle ScholarPubMed
Jaidev, L.R. and Chatterjee, K.: Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater. Des. 161, 44 (2019).CrossRefGoogle Scholar
Yuan, B., Zhou, S., and Chen, X.: Rapid prototyping technology and its application in bone tissue engineering. J. Zhejiang Univ., Sci., B 18, 303 (2017).CrossRefGoogle ScholarPubMed
Yuan, L., Ding, S., and Wen, C.: Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact. Mater. 4, 56 (2019).CrossRefGoogle ScholarPubMed
Malikmammadov, E., Tanir, T.E., Kiziltay, A., and Hasirci, V.: PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 5063, 1 (2018).Google Scholar
Cho, Y.S., Choi, S., Lee, S.H., Kim, K.K., and Cho, Y.S.: Assessments of polycaprolactone/hydroxyapatite composite scaffold with enhanced biomimetic mineralization by exposure to hydroxyapatite via a 3D-printing system and alkaline erosion. Eur. Polym. J. 113, 340 (2019).CrossRefGoogle Scholar
Shao, H., He, J., Lin, T., Zhang, Z., Zhang, Y., and Liu, S.: 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram. Int. 45, 1163 (2019).CrossRefGoogle Scholar
Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., Liu, C., Li, Y., Wang, P., and He, Y.: 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 39, 661 (2019).CrossRefGoogle Scholar
Hwa, L.C., Rajoo, S., Noor, A.M., Ahmad, N., and Uday, M.B.: Recent advances in 3D printing of porous ceramics: A review. Curr. Opin. Solid State Mater. Sci. 21, 323 (2017).CrossRefGoogle Scholar
Chen, P., Liu, L., Pan, J., Mei, J., Li, C., and Zheng, Y.: Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core–shell nanofibers for bone tissue engineering. Mater. Sci. Eng. C 97, 325 (2019).CrossRefGoogle ScholarPubMed
Nabavinia, M., Baradar, A., and Naderi-meshkin, H.: Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater. Sci. Eng. C 97, 67 (2019).CrossRefGoogle ScholarPubMed
González Ocampo, J.I., Machado de Paula, M.M., Bassous, N.J., Lobo, A.O., Ossa Orozco, C.P., and Webster, T.J.: Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomater. 83, 425 (2019).CrossRefGoogle ScholarPubMed
dos Santos, M.V.B., Feitosa, G.T., Osajima, J.A., Santos, R.L.P., and da Silva Filho, E.C.: Desenvolvimento de biomaterial composto por hidroxiapatita e clorexidina para aplicação na cavidade oral. Cerâmica 65, 130 (2019).CrossRefGoogle Scholar
Abdal-hay, A., Abbasi, N., Gwiazda, M., Hamlet, S., and Ivanovski, S.: Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing. Eur. Polym. J. 105, 257 (2018).CrossRefGoogle Scholar
Wang, Y., Liu, L., and Guo, S.: Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polym. Degrad. Stab. 95, 207 (2010).CrossRefGoogle Scholar
Tomás, H., Alves, C.S., and Rodrigues, J.: Laponite®: A key nanoplatform for biomedical applications? Nanomed. Nanotechnol. Biol. Med. 14, 2407 (2018).CrossRefGoogle ScholarPubMed
Afewerki, S., Magalhães, L.S.S.M., Silva, A.D.R., Stocco, T.D., Silva Filho, E.C., Marciano, F.R., and Lobo, A.O.: Bioprinting laponite for orthopedic applications. Adv. Healthcare Mater. 8, 1 (2019).CrossRefGoogle ScholarPubMed
Wang, C., Wang, S., Li, K., Ju, Y., Li, J., Zhang, Y., Li, J., Liu, X., Shi, X., and Zhao, Q.: Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 9, 1 (2014).Google ScholarPubMed
Mignon, A., Pezzoli, D., Prouvé, E., Lévesque, L., Arslan, A., Pien, N., Schaubroeck, D., Van Hoorick, J., Mantovani, D., Van Vlierberghe, S., and Dubruel, P.: Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 136, 95 (2019).Google Scholar
Silva, J.M., Barud, H.S., Meneguin, A.B., Constantino, V.R.L., and Ribeiro, S.J.L.: Applied clay science inorganic–organic bio-nanocomposite films based on laponite and cellulose nano fibers (CNF). Appl. Clay Sci. 168, 428 (2019).CrossRefGoogle Scholar
Nair, B.P., Sindhu, M., and Nair, P.D.: Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf., B 143, 423 (2016).CrossRefGoogle ScholarPubMed
Gaharwar, A.K., Mihaila, S.M., Swami, A., Patel, A., Sant, S., Reis, R.L., Marques, A.P., Gomes, M.E., and Khademhosseini, A.: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 25, 3329 (2013).CrossRefGoogle ScholarPubMed
Corcione, C.E., Gervaso, F., Scalera, F., Montagna, F., Sannino, A., and Maffezzoli, A.: The feasibility of printing polylactic acid—Nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J. Appl. Polym. Sci. 134, 1 (2016).Google Scholar
Esposito Corcione, C., Scalera, F., Gervaso, F., Montagna, F., Sannino, A., and Maffezzoli, A.: One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J. Therm. Anal. Calorim. 134, 575 (2018).CrossRefGoogle Scholar
Haq, R., Haq, A., Wahab, S., and Jaimi, N.I.: Fabrication process of polymer nano-composite filament for fused deposition modeling. Appl. Mech. Mater. 466, 8 (2014).Google Scholar
Fu, J., Yu, X., and Jin, Y.: 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int. J. Pharm. 539, 75 (2018).CrossRefGoogle ScholarPubMed
Muwaffak, Z., Goyanes, A., Clark, V., Basit, A.W., Hilton, S.T., and Gaisford, S.: Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int. J. Pharm. 527, 161 (2017).CrossRefGoogle ScholarPubMed
Zuev, D.M., Klimashina, E.S., Evdokimov, P.V., Filippov, Y.Y., and Putlyaev, V.I.: Preparation of β-Ca3(PO4)2/poly(D,L-lactide) and β-Ca3(PO4)2/poly(ε-caprolactone) biocomposite implants for bone substitution. Inorg. Mater. 54, 87 (2018).CrossRefGoogle Scholar
Roopavath, U.K., Malferrari, S., Van Haver, A., Verstreken, F., Rath, S.N., and Kalaskar, D.M.: Optimization of extrusion based ceramic 3D printing process for complex bony designs. Mater. Des. 162, 263 (2019).CrossRefGoogle Scholar
da Cunha, M.R., Alves, M.C., Calegari, A.R.A., Iatecola, A., Galdeano, E.A., Galdeano, T.L., Munhoz, M.d.A.e S., Plepis, A.M.d.G., Martins, V.d.C.A., and Horn, M.M.: In vivo study of the osteoregenerative potential of polymer membranes consisting of chitosan and carbon nanotubes. Mater. Res. 20, 819 (2017).CrossRefGoogle Scholar
Niamsap, T., Lam, N.T., and Sukyai, P.: Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr. Polym. 205, 159 (2019).CrossRefGoogle ScholarPubMed
Ripamonti, U., Crooks, J., Khoali, L., and Roden, L.: The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 30, 1428 (2009).CrossRefGoogle ScholarPubMed
Torres, E., Fombuena, V., Vallés-Lluch, A., and Ellingham, T.: Improvement of mechanical and biological properties of polycaprolactone loaded with hydroxyapatite and halloysite nanotubes. Mater. Sci. Eng. C 75, 418 (2017).CrossRefGoogle ScholarPubMed
Chan-Chan, L.H., González-García, G., Vargas-Coronado, R.F., Cervantes-Uc, J.M., Hernández-Sánchez, F., Marcos-Fernandez, A., and Cauich-Rodríguez, J.V.: Characterization of model compounds and poly(amide-urea) urethanes based on amino acids by FTIR, NMR, and other analytical techniques. Eur. Polym. J. 92, 27 (2017).CrossRefGoogle Scholar
Huang, T., Fan, C., Zhu, M., Zhu, Y., Zhang, W., and Li, L.: 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Appl. Surf. Sci. 467, 345 (2019).CrossRefGoogle Scholar
Hivechi, A., Hajir Bahrami, S., and Siegel, R.A.: Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers. Int. J. Biol. Macromol. 124, 411 (2019).CrossRefGoogle ScholarPubMed
Lin, Z., Hu, R., Zhou, J., Ye, Y., Xu, Z., and Lin, C.: A further insight into the adsorption mechanism of protein on hydroxyapatite by FTIR-ATR spectrometry. Spectrochim. Acta Mol. Biomol. Spectrosc. 173, 527 (2017).CrossRefGoogle ScholarPubMed
Batista, T., Chiorcea-Paquim, A.M., Brett, A.M.O., Schmitt, C.C., and Neumann, M.G.: Laponite RD/polystyrenesulfonate nanocomposites obtained by photopolymerization. Appl. Clay Sci. 53, 27 (2011).CrossRefGoogle Scholar
Luo, J., Zhang, H., zhu, J., Cui, X., Gao, J., Wang, X., and Xiong, J.: 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf., B 163, 369 (2018).CrossRefGoogle ScholarPubMed
Bittiger, H., Marchessault, R.H., and Niegisch, W.D.: Crystal structure of poly-ε-caprolactone. Acta Crystallogr. B 26, 1923 (2002).CrossRefGoogle Scholar
Ravi, M., Song, S., Wang, J., Tang, X., and Zhang, Z.: Preparation and characterization of biodegradable poly(ε-caprolactone)-based gel polymer electrolyte films. Ionics 22, 661670 (2016).CrossRefGoogle Scholar
Sathiyavimal, S., Vasantharaj, S., LewisOscar, F., Pugazhendhi, A., and Subashkumar, R.: Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications. Int. J. Biol. Macromol. 129, 844 (2019).CrossRefGoogle ScholarPubMed
Gloria, A., Frydman, B., Lamas, M.L., Serra, A.C., Martorelli, M., Coelho, J.F.J., Fonseca, A.C., and Domingos, M.: The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds. Mater. Sci. Eng. C 98, 994 (2019).CrossRefGoogle ScholarPubMed
Zanetti, M., Mazon, L.R., de Meneses, A.C., Silva, L.L., de Araújo, P.H.H., Fiori, M.A., and de Oliveira, D.: Encapsulation of geranyl cinnamate in polycaprolactone nanoparticles. Mater. Sci. Eng. C 97, 198 (2019).CrossRefGoogle ScholarPubMed
da Silva, O.G., da Silva Filho, E.C., da Fonseca, M.G., Arakaki, L.N.H., and Airoldi, C.: Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal. J. Colloid Interface Sci. 302, 485 (2006).CrossRefGoogle ScholarPubMed
Guimarães, A.d.M.F., Ciminelli, V.S.T., and Vasconcelos, W.L.: Surface modification of synthetic clay aimed at biomolecule adsorption: Synthesis and characterization. Mater. Res. 10, 37 (2007).CrossRefGoogle Scholar
de Moura, N.K., Siqueira, I.A.W.B., Machado, J.P.d.B., Kido, H.W., Avanzi, I.R., Rennó, A.C.M., Trichês, E.d.S., and Passador, F.R.: Production and characterization of porous polymeric membranes of PLA/PCL blends with the addition of hydroxyapatite. J. Compos. Sci. 3, 45 (2019).CrossRefGoogle Scholar
Mangalampalli, B., Dumala, N., and Grover, P.: Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. J. Environ. Sci. 66, 125 (2018).CrossRefGoogle ScholarPubMed
Scherer, M.D., Sposito, J.C.V., Falco, W.F., Grisolia, A.B., Andrade, L.H.C., Lima, S.M., Machado, G., Nascimento, V.A., Gonçalves, D.A., Wender, H., Oliveira, S.L., and Caires, A.R.L.: Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Sci. Total Environ. 660, 459 (2019).CrossRefGoogle ScholarPubMed
Surendran, D., Sarath Kumar, R.S., Geetha, C.S., and Mohanan, P.V.: Long term effect of biodegradable polymer on oxidative. BIO 2, 37 (2012).CrossRefGoogle Scholar
Echave, M.C., Sánchez, P., Pedraz, J.L., and Orive, G.: Progress of gelatin-based 3D approaches for bone regeneration. J. Drug Deliv. Sci. Technol. 42, 63 (2017).CrossRefGoogle Scholar
Silva de Sá, I., Peron, A.P., Leimann, F.V., Bressan, G.N., Krum, B.N., Fachinetto, R., Pinela, J., Calhelha, R.C., Barreiro, M.F., Ferreira, I.C.F.R., Gonçalves, O.H., and Ineu, R.P.: In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity, and genotoxicity of curcumin-loaded solid dispersions. Food Chem. Toxicol. 125, 29 (2019).CrossRefGoogle ScholarPubMed
Srivastava, G.K., Alonso-Alonso, M.L., Fernandez-Bueno, I., Garcia-Gutierrez, M.T., Rull, F., Medina, J., Coco, R.M., and Pastor, J.C.: Comparison between direct contact and extract exposure methods for PFO cytotoxicity evaluation. Sci. Rep. 8, 1 (2018).CrossRefGoogle ScholarPubMed
Sunandhakumari, V.J., Vidhyadharan, A.K., Alim, A., Kumar, D., Ravindran, J., Krishna, A., and Prasad, M.: Fabrication and in vitro characterization of bioactive glass/nano hydroxyapatite reinforced electrospun poly(ε-caprolactone) composite membranes for guided tissue regeneration. Bioengineering 5, 54 (2018).CrossRefGoogle ScholarPubMed
Morouço, P., Biscaia, S., Viana, T., Franco, M., Malça, C., Mateus, A., Moura, C., Ferreira, F.C., Mitchell, G., and Alves, N.M.: Fabrication of poly(ε-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles. BioMed Res. Int. 2016, 110 (2016).CrossRefGoogle ScholarPubMed
International Organization for Standardization. ISO 10993-5. In: Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity . Geneve: ISO; 2009.Google Scholar
Davachi, S.M., Shiroud Heidari, B., Hejazi, I., Seyfi, J., Oliaei, E., Farzaneh, A., and Rashedi, H.: Interface modified polylactic acid/starch/poly ε-caprolactone antibacterial nanocomposite blends for medical applications. Carbohydr. Polym. 155, 336 (2017).CrossRefGoogle ScholarPubMed
Ghadiri, M., Chrzanowski, W., Lee, W.H., Fathi, A., Dehghani, F., and Rohanizadeh, R.: Physico-chemical, mechanical, and cytotoxicity characterizations of laponite®/alginate nanocomposite. Appl. Clay Sci. 85, 64 (2013).CrossRefGoogle Scholar
Mieszawska, A.J., Fourligas, N., Georgakoudi, I., Ouhib, N.M., Belton, D.J., Perry, C.C., and Kaplan, D.L.: Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials 31, 8902 (2010).CrossRefGoogle ScholarPubMed
Barbosa, M.C., Messmer, N.R., Brazil, T.R., Marciano, F.R., and Lobo, A.O.: The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Mater. Sci. Eng. C 33, 2620 (2013).CrossRefGoogle ScholarPubMed
Fiskesjö, G.: The allium test as a standard in environmental monitoring. Hereditas 102, 99 (1985).CrossRefGoogle ScholarPubMed

de Araujo et al. Supplementary Materials

de Araujo et al. Supplementary Materials

Download de Araujo et al. Supplementary Materials(Video)
Video 2.7 MB