Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T04:52:29.769Z Has data issue: false hasContentIssue false

Preparation of YBa2Cu3O7−δ thin film by laser-assisted metal-organic chemical vapor deposition using highly volatile fluorocarbon-based Ba source

Published online by Cambridge University Press:  31 January 2011

Yasuyuki Mizushima
Affiliation:
Superconductivity Research Laboratory, Nagoya Division, ISTEC, 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456, Japan
Izumi Hirabayashi
Affiliation:
Superconductivity Research Laboratory, Nagoya Division, ISTEC, 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456, Japan
Get access

Abstract

Superconducting oxide films of YBa2Cu3O7−δ (YBCO) were produced on magnesia (MgO) single crystalline substrates (100) by laser-assisted metal-organic chemical vapor deposition. The highly volatile Ba(hfa)2 · tetraglyme was used as a Ba source metal-organic material. Smoother surface YBCO film was obtained with KrF laser irradiation than without. However, KrF laser irradiation does not lower the temperature for formation of YBCO(123) phase. YBCO film prepared at 750 °C on the MgO substrate showed a Tc(R = 0) of 69 K, and that prepared with KrF laser irradiation was 85 K. When water was added to the reaction chamber, barium fluoride was reduced and the YBCO formation was detected at a temperature of 650 °C and higher. YBCO film prepared at the temperature of 700 °C for 40 min without KrF laser irradiation behaves as a semiconductor, and one prepared with laser irradiation showed a Tc(R = 0) of 78 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Berry, A. D., Gaskill, D.K., Holm, R.T., Cukauskas, E.J., Kaplan, R., and Henry, R.L., Appl. Phys. Lett. 52, 1743 (1988).CrossRefGoogle Scholar
2.Yamane, H., Kurosawa, H., Iwasaki, H., Matsumoto, H., Hirai, T., Kobayashi, N., and Muto, Y., Jpn. J. Appl. Phys. 27, L1275 (1988).CrossRefGoogle Scholar
3.Yamane, H., Kurosawa, H., and Hirai, T., Chem. Lett., 939 (1988).CrossRefGoogle Scholar
4.Zhao, J., Kahmen, K., Marcy, H.O., Tonge, L.M., Wessels, B.W., Marks, T. J., and Kannewurf, C.R., Appl. Phys. Lett. 53, 1750 (1988).CrossRefGoogle Scholar
5.Timmer, K., Spee, C.I.M.A., Macker, A., and Meinema, H. A., Inorg. Chim. Acta 190, 109 (1991).CrossRefGoogle Scholar
6. C. I.Spee, M. A., van der Zouwen-Assink, E. A., Timmer, K., Macker, A., and Meinema, H. A., J. Phys. IV Sept., C2295 (1991).Google Scholar
7.Watson, I. M.et al., J. Mater. Chem. 4, 1393 (1994).CrossRefGoogle Scholar
8.Harima, H., Ohnishi, H., Hanaoka, K., Tachibana, K., and Goto, Y., Jpn. J. Appl. Phys. 30, 1946 (1991).CrossRefGoogle Scholar
9.Mizushima, Y. and Hirabayashi, I., Appl. Surf. Sci. 79/80, 287 (1994).CrossRefGoogle Scholar
10.Zhao, J., Marcy, H. O., Tonge, L.M., Wessels, B.W., Marks, T. J., and Kannewurf, C.R., Physica C 159, 710 (1994).CrossRefGoogle Scholar
11.Ohkuma, H., Mochiku, T., Kanke, Y., Wen, Z.M., Yokkoyama, S., Asano, H., Iguchi, I., and Yamaka, E., Jpn. J. Appl. Phys. 26, L1484 (1987).CrossRefGoogle Scholar