Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T12:24:39.034Z Has data issue: false hasContentIssue false

Preparation of TiO2-(B)/SnO2 nanostructured composites and its performance as anodes for lithium-ion batteries

Published online by Cambridge University Press:  14 September 2020

Nayely Pineda-Aguilar*
Affiliation:
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, Nuevo León66455, Mexico Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Parque de Investigación e Innovación Tecnológica, C.P. 66628Apodaca, Nuevo León, Mexico
Margarita Sánchez-Domínguez
Affiliation:
Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Parque de Investigación e Innovación Tecnológica, C.P. 66628Apodaca, Nuevo León, Mexico
Eduardo M. Sánchez-Cervantes
Affiliation:
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, Nuevo León66455, Mexico
Lorena L. Garza-Tovar*
Affiliation:
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, Nuevo León66455, Mexico
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

TiO2-(B)/SnO2 nanostructured composites have been prepared by the combination of an oil-in-water (O/W) microemulsion reaction method (MRM) and a hydrothermal method. Its electrochemical properties were investigated as anode materials in lithium-ion battery, and characterization was carried out by XRD, BET, Raman, FE-SEM, EDXS, and TEM. The as-prepared composites consisted of monoclinic phase TiO2-(B) nanoribbons decorated with cassiterite structure SnO2 nanoparticles. The electrochemical performance of the TiO2-(B)/SnO2 50/50 nanocomposite electrode showed higher reversible capacity of 265 mAh/g than that of the pure SnO2 electrode, 79 mAh/g, after 50 cycles at 0.1 C in a voltage range of 0.01-3.0 V at room temperature. In addition, the coulombic efficiency of the TiO2-(B)/SnO2 50/50 nanocomposite remains at an average greater than 90% from the 2nd to the 50th cycles. The TiO2-(B)/SnO2 50/50 nanocomposite presented the best balance between the mechanical support effect provided by TiO2-(B) that also contributes to the LIB capacity and the SnO2 that provides high specific capacity.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhu, X., Jan, S.S., Zan, F., Wang, Y., and Xia, H.: Hierarchically branched TiO2@SnO2 nanofibers as high performance anodes for lithium-ion batteries. Mater. Res. Bull. 96, 405 (2017).10.1016/j.materresbull.2017.03.068CrossRefGoogle Scholar
Zhang, D.-A., Wang, Q., Wang, Q., Sun, J., Xing, L.-L., and Xue, X.-Y.: Core–shell SnO2@TiO2–B nanowires as the anode of lithium ion battery with high capacity and rate capability. Mater. Lett. 128, 295 (2014).CrossRefGoogle Scholar
Yang, Z., Du, G., Meng, Q., Guo, Z., Yu, X., Chen, Z., Guo, T., and Zeng, R.: Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications. RSC Adv. 1, 1834 (2011).CrossRefGoogle Scholar
Liu, S., Zhu, K., Tian, J., Zhang, W., Bai, S., and Shan, Z.: Submicron-sized mesoporous anatase TiO2 beads with trapped SnO2 for long-term, high-rate lithium storage. J. Alloys Compd. 639, 60 (2015).CrossRefGoogle Scholar
Hou, J., Wu, R., Zhao, P., Chang, A., Ji, G., Gao, B., and Zhao, Q.: Graphene–TiO2(B) nanowires composite material: Synthesis, characterization and application in lithium-ion batteries. Mater. Lett. 100, 173 (2013).CrossRefGoogle Scholar
Wu, H.-Y., Hon, M.-H., Kuan, C.-Y., and Leu, I.-C.: Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram. Int. 41, 9527 (2015).10.1016/j.ceramint.2015.04.011CrossRefGoogle Scholar
Sanchez-Dominguez, M., Liotta, L.F., Di Carlo, G., Pantaleo, G., Venezia, A.M., Solans, C., and Boutonnet, M.: Synthesis of CeO2, ZrO2, Ce0.5 Zr0.5 O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catal. Today 158, 35 (2010).CrossRefGoogle Scholar
Tiseanu, C., Parvulescu, V.I., Boutonnet, M., Cojocaru, B., Primus, P.A., Teodorescu, C.M., Solans, C., and Dominguez, M.S.: Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method. Phys. Chem. Chem. Phys. 13, 17135 (2011).10.1039/c1cp21135hCrossRefGoogle ScholarPubMed
Sanchez-Dominguez, M., Koleilat, H., Boutonnet, M., and Solans, C.: Synthesis of Pt nanoparticles in oil-in-water microemulsions: Phase behavior and effect of formulation parameters on nanoparticle characteristics. J. Dispersion Sci. Technol. 32, 1765 (2011).CrossRefGoogle Scholar
Pemartin, K., Solans, C., Vidal-Lopez, G., and Sanchez-Dominguez, M.: Synthesis of ZnO and ZnO2 nanoparticles by the oil-in-water microemulsion reaction method. Chem. Lett. 41, 1032 (2012).10.1246/cl.2012.1032CrossRefGoogle Scholar
Gabriella Di Carlo, M.L., Venezia, A.M., Boutonnet, M., and Sanchez-Dominguez, M.: Design of cobalt nanoparticles with tailored structural and morphological properties via O/W and W/O microemulsions and their deposition onto silica. Catalysts 5, 442 (2015).CrossRefGoogle Scholar
Pineda-Aguilar, N., Garza-Tovar, L.L., Sánchez-Cervantes, E.M., and Sánchez-Domínguez, M.: Preparation of TiO2–(B) by microemulsion mediated hydrothermal method: Effect of the precursor and its electrochemical performance. J. Mater. Sci.: Mater. Electron. 29 (2018).Google Scholar
Sanchez-Dominguez, M., Boutonnet, M., and Solans, C.: A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method. J. Nanopart. Res. 11, 1823 (2009).CrossRefGoogle Scholar
Sanchez-Dominguez, M., Pemartin, K., and Boutonnet, M.: Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach. Curr. Opin. Colloid Interface Sci. 17, 297 (2012).CrossRefGoogle Scholar
Boutonnet, M., Kizling, J., Stenius, P., and Maire, G.: The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf. 5, 209 (1982).CrossRefGoogle Scholar
Lisiecki, I., Billoudet, F., and Pileni, M.P.: Control of the shape and the size of copper metallic particles. J. Phys. Chem. 100, 4160 (1996).CrossRefGoogle Scholar
Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., and Peng, L.-M.: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).CrossRefGoogle Scholar
Beuvier, T., Richard-Plouet, M., and Brohan, L.: Accurate methods for quantifying the relative ratio of anatase and TiO2(B) nanoparticles. J. Phys. Chem. C 113, 13703 (2009).CrossRefGoogle Scholar
Diéguez, A., Romano-Rodríguez, A., Vilà, A., and Morante, J.R.: The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550 (2001).CrossRefGoogle Scholar
Li, L.: Growth and photoluminescence properties of SnO2 nanobelts. Mater. Lett. 98, 146 (2013).CrossRefGoogle Scholar
Ferreira, C.S., Santos, P.L., Bonacin, J.A., Passos, R.R., and Pocrifka, L.A.: Rice husk reuse in the preparation of SnO2/SiO2 nanocomposite. Mater. Res. 18, 639 (2015).CrossRefGoogle Scholar
Thommes, M., Kaneko, K., Neimark Alexander, V., Olivier James, P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing Kenneth, S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem., 1051 (2015).CrossRefGoogle Scholar
Zhou, Y., Jo, C., Lee, J., Lee, C.W., Qao, G., and Yoon, S.: Development of novel mesoporous C–TiO2–SnO2 nanocomposites and their application to anode materials in lithium ion secondary batteries. Microporous Mesoporous Mater. 151, 172 (2012).CrossRefGoogle Scholar
Zukalová, M., Kalbáč, M., Kavan, L., Exnar, I., and Graetzel, M.: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005).CrossRefGoogle Scholar
Wang, Q., Wen, Z., and Li, J.: Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. Inorg. Chem. 45, 6944 (2006).CrossRefGoogle ScholarPubMed
Li, N., Martin, C.R., and Scrosati, B.: A high-rate, high-capacity, nanostructured tin oxide electrode. Electrochem. Solid-State Lett. 3, 316 (2000).CrossRefGoogle Scholar
Wang, F., Yao, G., Xu, M., Zhao, M., Sun, Z., and Song, X.: Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries. J. Alloys Compd. 509, 5969 (2011).CrossRefGoogle Scholar
Yi, T.-F., Shu, J., Zhu, Y.-R., Zhu, X.-D., Zhu, R.-S., and Zhou, A.-N.: Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0V. J. Power Sources 195, 285 (2010).CrossRefGoogle Scholar
Sun, Z., Kim, J.H., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y.-M., and Dou, S.X.: Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 133, 19314 (2011).CrossRefGoogle ScholarPubMed
Jiang, H., Yang, X., Chen, C., Zhu, Y., and Li, C.: Facile and controllable fabrication of three-dimensionally quasi-ordered macroporous TiO2 for high performance lithium-ion battery applications. New J. Chem. 37, 1578 (2013).CrossRefGoogle Scholar
Courtney, I.A. and Dahn, J.R.: Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2 BPO6 glass. J. Electrochem. Soc. 144, 2943 (1997).CrossRefGoogle Scholar
Armstrong, A.R., Armstrong, G., Canales, J., García, R., and Bruce, P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).CrossRefGoogle Scholar
Winter, M. and Besenhard, J.O.: Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31 (1999).CrossRefGoogle Scholar
Palomares, V., Goñi, A., Muro, I.G.d., de Meatza, I., Bengoechea, M., Cantero, I., and Rojo, T.: Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO4/C composites. J. Power Sources 195, 7661 (2010).10.1016/j.jpowsour.2010.05.048CrossRefGoogle Scholar
Lu, C.-Z. and Fey, G.T.-K.: Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries. J. Phys. Chem. Solids 67, 756 (2006).CrossRefGoogle Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
Supplementary material: File

Pineda-Aguilar et al. supplementary material

Pineda-Aguilar et al. supplementary material

Download Pineda-Aguilar et al. supplementary material(File)
File 1.3 MB