Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T10:06:34.310Z Has data issue: false hasContentIssue false

Preparation of small silicon carbide quantum dots by wet chemical etching

Published online by Cambridge University Press:  11 July 2012

David Beke*
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary; and Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
Zsolt Szekrényes
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
István Balogh
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
Zsolt Czigány
Affiliation:
Institute for Technical Physics and Materials Science, Research Centre of Natural Sciences, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
Katalin Kamarás
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
Adam Gali
Affiliation:
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary; and Department of Atomic Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fabrication of nanosized silicon carbide (SiC) crystals is a crucial step in many biomedical applications. Here we report an effective fabrication method of SiC nanocrystals based on simple electroless wet chemical etching of crystalline cubic SiC. Comparing an open reaction system with a closed reaction chamber, we found that the latter produces smaller nanoparticles (less than 8 nm diameter) with higher yield. Our samples show strong violet-blue emission in the 410–450 nm region depending on the solvents used and the size. Infrared measurements unraveled that the surface of the fabricated nanoparticles is rich in oxidized carbon. This may open an opportunity to use standard chemistry methods for further biological functionalization of such nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brandizzi, F., Fricker, M., and Hawes, C.: A greener world: The revolution in plant bioimaging. Nat. Rev. Mol. Cell Biol. 3, 520530 (2002).CrossRefGoogle ScholarPubMed
Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4, 435446 (2005).CrossRefGoogle ScholarPubMed
Hardman, R.: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165172 (2006).CrossRefGoogle ScholarPubMed
Raya, C.T., Maldonado, D.H., Rico, J.R., Gañan, C.G., de Arellano-Lopez, A.R., and Fernandez, J.M.: Fabrication, chemical etching, and compressive strength of porous biomimetic SiC for medical implants. J. Mat. Res. 23, 32473254 (2008).CrossRefGoogle Scholar
Coletti, C., Jaroszeski, M.J., Pallaoro, A., Hoff, A.M., Iannotta, S., and Saddow, S.E.: Biocompatibility and wettability of crystalline SiC and Si surfaces. In IEEE EMBS Proceedings 29th Annual International Conference. 58495852 (EMBS, Lyon, France, 2007).Google Scholar
Frewin, C.L., Jaroszeski, M., Weeber, E., Muffly, K.E., Kumar, A., Peters, M., Oliveros, A., and Saddow, S.E.: Atomic force microscopy analysis of central nervous system cell morphology on silicon carbide and diamond substrates. J. Mol. Recognit. 22, 380388 (2009).CrossRefGoogle ScholarPubMed
Wang, S., Zhang, C., Wang, Z., and Zu, X.: Quantum confinement effect in silicon carbide nanostructures: A first principles study. Optoelectron. Rel. Mater. 4(6), 771773 (2006).Google Scholar
Vörös, M., Deák, P., Frauenheim, T., and Gali, A.: The absorption spectrum of hydrogenated silicon carbide nanocrystals from ab initio calculations. Appl. Phys. Lett. 96, 051909 (2010).CrossRefGoogle Scholar
Feng, D.H., Xu, Z.Z., Jia, T.Q., Li, X.X., and Gong, S.Q.: Quantum size effects on exciton states in indirect-gap quantum dots. Phys. Rev. B 68, 035334 (2003).CrossRefGoogle Scholar
Wu, X., Fan, J., Qiu, T., Yang, X., Siu, G., and Chu, P.K.: Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 94, 69 (2005).CrossRefGoogle ScholarPubMed
Botsoa, J., Bluet, J.M., Lysenko, V., Marty, O., Barbier, D., and Guillot, G.: Photoluminescence of 6H–SiC nanostructures fabricated by electrochemical etching. J. Appl. Phys. 102, 083526 (2007).CrossRefGoogle Scholar
Botsoa, J., Bluet, J., Lysenko, V., Sfaxi, L., Zakharko, Y., Marty, O., and Guillot, G.: Luminescence mechanisms in 6H-SiC nanocrystals. Phys. Rev. B 80, 16 (2009).CrossRefGoogle Scholar
Fan, J.Y., Wu, X.L., Li, H.X., Liu, H.W., Siu, G.G., and Chu, P.K.: Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Appl. Phys. Lett. 88, 041909 (2006).CrossRefGoogle Scholar
Botsoa, J., Lysenko, V., Géloën, A., Marty, O., Bluet, J.M., and Guillot, G.: Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 92, 173902 (2008).CrossRefGoogle Scholar
Fan, J., Wu, X., Zhao, P., and Chu, P.K.: Stability of luminescent 3C-SiC nanocrystallites in aqueous solution. Phys. Lett. A 360, 336338 (2006).CrossRefGoogle Scholar
Makkai, Z., Pécz, B., Bársony, I., Vida, G., Pongrácz, A., Josepovits, K.V., and Deák, P.: Isolated SiC nanocrystals in SiO2. Appl. Phys. Lett. 86(25), 253109 (2005).CrossRefGoogle Scholar
Veinot, J.G.C., Henderson, E.J., and Hessel, C.M.: Sol-gel derived precursors to group 14 semiconductor nanocrystals – Convenient materials for enabling nanocrystal- based applications. Mat. Sci. Eng. 6, 012017 (2009).Google Scholar
Fan, J., Wu, X., and Chu, P.K.: Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Prog. Mater Sci. 51(8), 9831031 (2006).CrossRefGoogle Scholar
Zhu, J., Liu, Z., Wu, X.L., Xu, L.L., Zhang, W.C., and Chu, P.K.: Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method. Nanotechnology 18, 365603 (2007).CrossRefGoogle Scholar
Beke, D., Szekrényes, Zs., Balogh, I., Veres, M., Fazakas, É., Varga, L.K., Kamarás, K., Czigány, Zs., and Gali, A.: Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching. Appl. Phys. Lett. 99, 213108 (2011).CrossRefGoogle Scholar
Krasotkina, N.I., Yakovleva, V.C., Voronin, N.I., Shmitt- Fogelevich, S.P.: Stability of Silicon Carbide to Hydrofluoric, Nitric, and Sulfuric Acids, in Ogneupory (in russian) 11, 49 (1968).Google Scholar
Cox, J.D. and Head, A.J.: Solubility of carbon dioxide in hydrofluoric acid solutions. Trans. Faraday Soc. 58, 18391845 (1962).CrossRefGoogle Scholar
Ruetschi, P. and Amlie, R.F.: Solubility of hydrogen in potassium hydroxide and sulfuric acid. J. Phys. Chem. 70(3), 718723 (1966).CrossRefGoogle Scholar
Wiebe, R. and Gaddy, V.L.: The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. J. Am. Chem. Soc. 62(4), 815817 (1940).CrossRefGoogle Scholar
Robbins, H. and Schwartz, B.: Chemical etching of silicon. J. Electrochem. Soc. 106(6), 505508 (1959).CrossRefGoogle Scholar
Steinert, M., Acker, J., Henßge, A., and Wetzig, K.: Etching of silicon in HF/HNO3 mixtures. J. Electrochem. Soc. 152(12), C843C850 (2005).CrossRefGoogle Scholar
Steinert, M., Acker, J., and Wetzig, K.: New aspects on the reduction of nitric acid during wet chemical etching of silicon in concentrated HF/HNO3 mixtures. J. Phys. Chem. C 112, 1413914144 (2008).CrossRefGoogle Scholar
Steinert, M., Acker, J., Krause, M., Oswald, S., and Wetzig, K.: Reactive species generated during wet chemical etching of silicon in HF/HNO3 mixtures. J. Phys. Chem. B 110(23), 1137711382 (2006).CrossRefGoogle ScholarPubMed
Vörös, M., Deák, P., Frauenheim, T., and Gali, Á.: The absorption of oxygenated silicon carbide nanoparticles. J. Chem. Phys. 133, 064705 (2010).CrossRefGoogle ScholarPubMed
Vörös, M., Deák, P., Frauenheim, T., and Gali, Á.: Influence of oxygen on the absorption of silicon carbide nanoparticles. Mater. Sci. Forum 679680, 520 (2011).CrossRefGoogle Scholar