Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T11:56:29.377Z Has data issue: false hasContentIssue false

Preparation and characterization of ultrafine TiO2 particles in reverse micelles by hydrolysis of titanium di-ethylhexyl sulfosuccinate

Published online by Cambridge University Press:  31 January 2011

Manjari Lal
Affiliation:
Department of Chemistry, University of Delhi, Delhi 110 007, India
Vishal Chhabra
Affiliation:
Department of Chemistry, University of Delhi, Delhi 110 007, India
Pushan Ayyub
Affiliation:
Materials Research Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India
Amarnath Maitra
Affiliation:
Department of Chemistry, University of Delhi, Delhi 110 007, India
Get access

Abstract

We describe the synthesis and characterization of ultrafine TiO2 particles (in both anatase as well as rutile form) produced by a chemical reaction within the aqueous core of a water-in-oil microemulsion. The microemulsion was stabilized and the Ti4+ ions provided by a functionalized surfactant derived from the commercially available Aerosol-OT, i.e., sodium bis (2-ethylhexyl) sulfosuccinate (Na-DEHSS). The Na+ ions in Aerosol-OT were completely replaced by Ti4+ through an ion-exchange reaction in nonaqueous solvents. Ultrafine TiO2 particles were produced by the hydrolysis of the Ti-containing surfactant in the water droplets. The dependence of the size of the precipitated TiO2 · xH2O particles on various structure parameters of the microemulsion was studied in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Progress in Materials Science 33, 223 (1989).Google Scholar
2.Ichinose, N., Ozaki, Y., and Kashu, S., Superfine Particle Technology (Springer-Verlag, London, 1992).CrossRefGoogle Scholar
3.Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993).Google Scholar
4.Nanophase and Nanocomposite Materials II, edited by Komarneni, S., Parker, J. C., and Wollenberger, H. J., (Mater. Res. Soc. Symp. Proc. 457, Pittsburgh, PA, 1997).Google Scholar
5.Fendler, J. H., Chem. Rev. 87, 877 (1987).CrossRefGoogle Scholar
6.Henglein, A., Topics in Current Chemistry 143, 113 (1988).CrossRefGoogle Scholar
7.DeGennes, P. G. and Taupin, C., J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
8.Microemulsions and Related Systems, edited by Bourrel, M. and Schechter, R. S. (Marcel Dekker, New York, 1988).Google Scholar
9.Bandow, S., Kimura, K., Kon-no, K., and Kitahara, A., Jpn. J. Appl. Phys. 26, 713 (1987).CrossRefGoogle Scholar
10.Ayyub, P., Maitra, A. N., and Shah, D. O., Physica C 168, 571 (1990).Google Scholar
11.Pillai, V., Kumar, P., and Shah, D. O., J. Magn. Magn. Mater. 116, L299 (1992).CrossRefGoogle Scholar
12.Pillai, V., Kumar, P., Hou, M. J., Ayyub, P., and Shah, D. O., Adv. Colloid Interface Sci. 55, 241 (1995).CrossRefGoogle Scholar
13.Chhabra, V., Pillai, V., Mishra, B. K., Morrone, A., and Shah, D. O., Langmuir 11, 3307 (1995).CrossRefGoogle Scholar
14.Chhabra, V., Ayyub, P., Chattopadhyay, S., and Maitra, A. N., Mater. Lett. 26, 21 (1996).CrossRefGoogle Scholar
15.Chhabra, V., Lal, M., Maitra, A. N., and Ayyub, P., J. Mater. Res. 10, 2689 (1995).CrossRefGoogle Scholar
16.Kitahara, A., Ohasi, O., and Kon-no, K., J. Colloid Interface Sci. 78, 122 (1988).Google Scholar
17.Sugimura, T., Sindo, Y., Hasegawa, M., Kitahara, A., and Masuda, Y., J. Dispersion Sci. Tech. 13, 251 (1992).CrossRefGoogle Scholar
18.Karch, J., Birringer, R., and Gleiter, H., Nature (London) 330, 556 (1987).CrossRefGoogle Scholar
19.Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T. and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
20.Maitra, A., J. Phys. Chem. 88, 5122 (1984).CrossRefGoogle Scholar
21.Ocana, M., Fornes, V., and Serna, C. J., Ceram. Int., 99 (1992).CrossRefGoogle Scholar
22.Burdett, J. K., Inorg. Chem. 24, 2244 (1985).CrossRefGoogle Scholar
23.Cazabat, A. M. and Langevin, D., J. Chem. Phys. 74, 3148 (1981).CrossRefGoogle Scholar