Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:50:38.996Z Has data issue: false hasContentIssue false

Preparation and Characterization of BaTiO3 Thin Films on MgO-buffered Si(100) Substrates by RF Sputtering

Published online by Cambridge University Press:  31 January 2011

Sangsub Kim*
Affiliation:
Department of Materials Science and Metallurgical Engineering, Sunchon National University, 315 Maegok-dong, Sunchon 540–742, Korea
Shunichi Hishita
Affiliation:
National Institute for Research in Inorganic Materials, 1–1 Namiki, Tsukuba, Ibaraki 305, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

We report the results of a study on the deposition and characterization of partially oriented BaTiO3 thin films on MgO-buffered Si(100) by radio-frequency magnetron sputtering. The structural and morphological characteristics of the MgO buffer layer were investigated as a function of substrate temperature. The x-ray θ-2θ, φ scans, and observation of surface morphology revealed that MgO grew with a tendency of (001) orientation. Partially (00l) or (h00) textured BaTiO3 thin films were obtained on Si(100) with the MgO buffer layer while randomly oriented BaTiO3 thin films with large-scale cracks on the surface were made without the MgO layer. Pt/BaTiO3/Pt multistructures were formed on Si(100), MgO/Si(100), and MgO(100) single crystal substrates to conduct preliminary electrical measurements for metal-insulator-metal type capacitor. Comparison of the crystallographic orientation, morphology, and electrical properties between the BaTiO3 films on Si(100) with and without the MgO buffer layer supported the favorable role of the MgO layer as a buffer for the growth of BaTiO3 films on Si(100).

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sheppard, L. M., Ceram. Bull. 71, 85 (1992).Google Scholar
2.Kaiser, D. L., Vaudin, M. D., Rotter, L. D., Wang, Z. L., Cline, J. P., Hwang, C. S., Marinenko, R. B., and Gillen, J. G., Appl. Phys. Lett. 66, 2801 (1995).CrossRefGoogle Scholar
3.Kim, S., Hishita, S., Kang, Y., and Baik, S., J. Appl. Phys. 78, 5604 (1995).CrossRefGoogle Scholar
4.Matsuoka, M., Hoshino, K., and Ono, K., J. Appl. Phys. 76, 1768 (1994).CrossRefGoogle Scholar
5.Wills, L. A., Wessels, B. W., Richeson, D. S., and Marks, T. J., Appl. Phys. Lett. 60, 41 (1992).CrossRefGoogle Scholar
6.Tarsa, E. J., McCormick, K. L., and Speck, J. S., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 73.Google Scholar
7.Tonouchi, M., Sakaguchi, Y., and Kobayashi, T., J. Appl. Phys. 62, 96 (1987).CrossRefGoogle Scholar
8.Harada, K., Fujimori, N., and Yazu, S., Jpn. J. Appl. Phys. 27, L1524 (1988).CrossRefGoogle Scholar
9.Kwak, B. S., Boyd, E. P., Zhang, K., Erbil, A., and Wilkins, B., Appl. Phys. Lett. 54. 2542 (1989).CrossRefGoogle Scholar
10.Fork, D. K., Ponce, F. A., Tramontana, J. C., and Geballe, T. H., Appl. Phys. Lett. 58, 2294 (1991).Google Scholar
11.Kaneko, Y., Miroshiba, M., and Yamashita, T., Jpn. J. Appl. Phys. 30, 1091 (1991).CrossRefGoogle Scholar
12.Pinto, R., Poothra, J. I., Purandare, S. C., Pai, S. P., D'Souza, C. P., Kumar, D., and Sharon, M., J. Vac. Sci. Technol. A 9, 2670 (1991).CrossRefGoogle Scholar
13.Durusoy, H. Z., J. Mater. Sci. Lett. 10, 1023 (1991).CrossRefGoogle Scholar
14.Huang, R. and Kitai, A. H., Appl. Phys. Lett. 61, 1450 (1992).CrossRefGoogle Scholar
15.Li, Y., Xiong, G., Lian, G., Li, J., and Gan, Z., Thin Solid Films 223, 11 (1993).CrossRefGoogle Scholar
16.Fukumoto, H., Imura, T., Osaka, Y., and Nishiyama, F., J. Appl. Phys. 66, 616 (1989).CrossRefGoogle Scholar
17.Horita, S., Murakawa, M., and Fujiyama, T., Jpn. J. Appl. Phys. 34, 1942 (1995).Google Scholar
18.Ihara, M., Arimoto, Y., Jifuku, M., Kimura, T., Kodama, S., Yamawaki, H., and Yamaoka, T., J. Electrochem. Soc. 129, 2569 (1982).CrossRefGoogle Scholar
19.Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S., and Ueda, Y., Appl. Phys. Lett. 56, 1332 (1990).CrossRefGoogle Scholar
20.Kim, S. and Hishita, S., unpublished work.Google Scholar
21.Dharmadhikari, V. S. and Grannemann, W. W., J. Appl. Phys. 53, 8988 (1982).CrossRefGoogle Scholar
22.Kwak, B. S., Boyd, Z. E. P., Erbil, A., and Wilkens, B. J., J. Appl. Phys. 69, 767 (1991).CrossRefGoogle Scholar
23.Nourbakhsh, S., Vasilyeva, I., and Carter, J. N., Appl. Phys. Lett. 66, 2804 (1995).CrossRefGoogle Scholar
24.Robins, L. H., Kaiser, D. L., Rotter, L. D., and Stauf, G. T., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 315.Google Scholar
25.Cillessen, J. F. M., Wolf, R. M., and deLeeuw, D. M., Thin Solid Films 226, 53 (1993).Google Scholar
26.Lu, H. A., Wills, L. A., and Wessels, B. W., Appl. Phys. Lett. 64, 2973 (1994).CrossRefGoogle Scholar
27.Nakazawa, H., Yamane, H., and Hirai, T., Jpn. J. Appl. Phys. 30, 2200 (1991).CrossRefGoogle Scholar
28.Yeh, M. H., Liu, K. S., Ling, Y. C., Wang, J. P., and Lin, I. N., J. Appl. Phys. 77, 5335 (1995).CrossRefGoogle Scholar
29.Sayer, M., Kumar, V., Barrow, D., Zou, L., and Amm, D.. in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 39.Google Scholar
30.Sreenivas, K., Mansingh, A., and Sayer, M., J. Appl. Phys. 62, 4475 (1987).CrossRefGoogle Scholar
31.Lee, M. B., Kawasaki, M., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 66, 1331 (1995).CrossRefGoogle Scholar