Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T01:08:13.914Z Has data issue: false hasContentIssue false

Preferred orientation of pitch precursor fibers and carbon fibers prepared from isotropic pitch

Published online by Cambridge University Press:  31 January 2011

T. Hamada
Affiliation:
Advanced Materials and Technology Research Laboratories, Nippon Steel Corporation, 1618 Ida, Nakahara-ku, Kawasaki 211, Japan
M. Furuyama
Affiliation:
Three-D Composites Research Corporation, 2-1-6 Sengen, Tsukuba 305, Japan
T. Tomioka
Affiliation:
Advanced Materials and Technology Research Laboratories, Nippon Steel Corporation, 1618 Ida, Nakahara-ku, Kawasaki 211, Japan
M. Endo
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
Get access

Abstract

The preferred orientation of pitch precursor fibers and carbon fibers from an isotropic pitch was studied using x-ray diffraction techniques. The φ scan profile of a pitch precursor fiber was divided into two parts: φ scan-dependent (anisotropic) and φ scan-independent (isotropic) profiles. The half width at half maximum (HWHM) intensity of the anisotropic part became smaller as the pitch viscosity increased during spinning and as the filament diameter decreased. The area ratio of the anisotropic part to the total area increased when spinning at higher pitch viscosities and when making the diameter thinner; no preferred orientation existed for pitch precursor fibers with very large diameters. A thermodynamic model is proposed for the preferred orientation formation when spinning an isotropic pitch. The carbon fiber exhibited no skin-core difference in preferred orientation. A crystallite with a larger crystallite size Lc(002) in the carbon fiber was shown to be better aligned along the fiber axis than that with a smaller Lc(002). Furthermore, a well-aligned crystallite possessed a larger Lc(002) than one that was misaligned. The pitch precursor fiber also exhibited such a correlation between Lc(002) and the preferred orientation, but the correlation was weak.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Otani, S., Sen-i Gakkai-shi 34 (8), 250 (1978) (in Japanese).Google Scholar
2.Otani, S., Okuda, K., and Matsuda, S., Tanso Sen-i, edited by Henshu-Sha, Kindai in 1972, Tokyo, fully revised in 1983, and revised in 1986, p. 173 (in Japanese).Google Scholar
3.Ruland, W., Appl. Polym. Symp., No. 9, 293 (1969).Google Scholar
4.Bright, A. A. and Singer, L. S., Carbon 17, 59 (1979).CrossRefGoogle Scholar
5.Dresselhaus, M. S., Dresselhaus, G., Sugiura, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments, edited by Cardona, Manuel (Springer Series in Materials Science 5), p. 55 and p. 132.Google Scholar
6.Singer, L. S., Fuel 60, 839 (1981).CrossRefGoogle Scholar
7.Matsumoto, T., Pure & Appl. Chem. 57 (11), 1553 (1985).CrossRefGoogle Scholar
8.Singer, L. S., Carbon 16, 409 (1978).CrossRefGoogle Scholar
9.Matsumura, Y., Sekiyu-Gakkai-shi 30 (5), 291 (1987) (in Japanese).CrossRefGoogle Scholar
10.Matsumura, Y., Kagaku-to-Kogyo 41 (1), 133 (1988) (in Japanese).Google Scholar
11.Hamada, T., Furuyama, M., Sajiki, Y., Tomioka, T., and Endo, M., J. Mater. Res. 5, 1271 (1990).CrossRefGoogle Scholar
12.Otani, S., Kokubo, Y., and Koitabashi, T., Bull. Chem. Soc. Jpn. 43, 3291 (1970).CrossRefGoogle Scholar
13.Otani, S., Watanabe, S., Ogino, H., Iijima, K., and Koitabashi, T., Bull. Chem. Soc. Jpn. 45, 3710 (1972).CrossRefGoogle Scholar
14.Shiraishi, M. and Kobayashi, K., Nippon-Kagaku-Kaishi, No. 6, 1135 (1972) (in Japanese).CrossRefGoogle Scholar
15.Yen, T. F., Erdman, J. G., and Pollack, S. S., Anal. Chem. 33 (11), 1587 (1961).CrossRefGoogle Scholar
16.Jenkins, G. M., Kawamura, K., and Ban, L. L., Proc. R. Soc. London A 327, 501 (1972).Google Scholar
17.Tahar, M. Z., Dresselhaus, M. S., and Endo, M., Carbon 24 (1), 67 (1986).CrossRefGoogle Scholar
18.Bennett, S. C. and Johnson, D. J., Carbon 17, 25 (1975).CrossRefGoogle Scholar
19.Bennett, S. C., Johnson, D. J., and Johnson, W., J. Mater. Sci. 18, 3337 (1983).CrossRefGoogle Scholar
20.Hamada, T., Furuyama, M., Tomioka, T., and Endo, M., J. Mater. Res., in preparation.Google Scholar
21.Hamada, T., Nishida, T., Furuyama, M., and Tomioka, T., Carbon 26 (6), 837 (1988).CrossRefGoogle Scholar
22.Hamada, T., Furuyama, M., Sajiki, Y., Tomioka, T., and Endo, M., J. Mater. Res. 5, 570 (1990).CrossRefGoogle Scholar
23.Hamada, T., Nishida, T., Sajiki, Y., Matsumoto, M., and Endo, M., J. Mater. Res. 2, 850 (1987).CrossRefGoogle Scholar
24.Tillgner, H. and Ruland, W., In Extended Abstracts of the 18th Biennial Conference on Carbon, Worcester, MA (American Carbon Society, University Park, PA, 1987), p. 28.Google Scholar
25.Bacon, G. E., J. Appl. Chem. 6, 477 (1956).CrossRefGoogle Scholar
26.Shimizu, J., Toriumi, K., and Tamai, K., Sen-i Gakkai-shi 33 (5), 208 (1977) (in Japanese).CrossRefGoogle Scholar
27.White, J. L., Pure & Appl. Chem. 55 (5), 765 (1983).CrossRefGoogle Scholar
28.Dees, J. R. and Spruiell, J. E., J. Appl. Polym. Sci. 18, 1053 (1974).CrossRefGoogle Scholar
29.Nadella, H., Henson, H. M., Spruiell, J. E., and White, J. L., J. Appl. Polym. Sci. 21, 3003 (1977).CrossRefGoogle Scholar
30.Diefendorf, R. J., private communication, and Kurtz, D. S., Thesis submitted to the Graduate Faculty of Rensselaer Polytechnic Institute, Troy, New York, for the Degree of Master of Science in 1983.Google Scholar
31.Chen, K. J. and Diefendorf, R. J., Extended Abstract Program, 18th Biennial Conf. on Carbon, Worcester, MA, 292 (1987).Google Scholar
32.Shiraishi, M. and Kobayashi, K., Nippon-Kagaku-Kaishi, No. 6, 1135 (1972) (in Japanese).CrossRefGoogle Scholar