Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:33:11.789Z Has data issue: false hasContentIssue false

Preferred heteroepitaxial orientations of ZnO nanorods on Ag

Published online by Cambridge University Press:  31 January 2011

J.A. Floro*
Affiliation:
University of Virginia, Department of Materials Science and Engineering, Charlottesville, Virginia 22904
J.W.P. Hsu
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Wurtzite ZnO nanorods were grown from solution onto coarse-grain bulk polycrystalline Ag substrates to explore the nature of preferred heteroepitaxial orientations. ZnO nanorods grow copiously on grains with <111> and <001> surface normals. Two epitaxial orientations were observed: {0001} ZnO ‖ {111} Ag with <20> ZnO ‖ <10> Ag and {0001} ZnO ‖ {001} Ag with <20> ZnO ‖ <10> Ag. Both feature ZnO basal plane growth, and the specific in-plane orientation relationships both feature alignment of close-packed directions in the interface. Nanorod growth was strongly suppressed on Ag grains in most other orientations. Although strain energy minimization is often invoked to explain the {0001} ZnO ‖ {111} Ag with <20> ZnO ‖ <10> Ag orientation, associated with an almost ideal near-coincidence site lattice matching, our data suggests that strain may not be the sole, or even the most important, determinant of the preferred orientations during solution-based epitaxial growth in this system.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisolm, M.F., Steiner, T.ZnO: Growth, doping and processing. Mater. Today 7, 34 (2004)Google Scholar
2.Lee, Y-J., Sounart, T.L., Scrymgeour, D.A., Spoerke, E.D., Voigt, J.A., Hsu, J.W.P.Control of ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst. Growth 304, 80 (2007)CrossRefGoogle Scholar
3.Govender, K., Boyle, D.S., Kenway, P.B., O'Brien, P.Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575 (2004)CrossRefGoogle Scholar
4.Sounart, T.L., Liu, J., Voigt, J.A., Hsu, J.W.P., Spoerke, E.D., Tian, Z., Jiang, Y.Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater. 16, 335 (2006)CrossRefGoogle Scholar
5.Hsu, J.W.P., Tian, Z.R., Simmons, N.C., Matzke, C.M., Voigt, J.A., Liu, J.Directed spatial organization of zinc oxide nanorods. Nano Lett. 5, 83 (2005)CrossRefGoogle ScholarPubMed
6.Scrymgeour, D.M., Sounart, T.L., Simmons, N.C., Hsu, J.W.P.Polarity and piezoelectric response of solution grown zinc oxide nanocrystals on silver. J. Appl. Phys. 101, 14316 (2007)CrossRefGoogle Scholar
7.Vellinga, W.P., De Hosson, J.T.M.Atomic structure and orientation relations of interfaces between Ag and ZnO. Acta Mater. 45, 933 (1997)CrossRefGoogle Scholar
8.Jedrecy, N., Renaud, G., Lazzari, R., Jupille, J.Unstrained islands with interface coincidence sites versus strained islands: X-ray measurements on Ag/ZnO. Phys. Rev. B 72, 195404 (2005)CrossRefGoogle Scholar
9.Bao, X., Lehmpfuhl, G., Weinberg, G., Schlogl, R., Ertl, G.Variation of the morphology of silver surfaces by thermal and catalytic etching. J. Chem. Soc., Faraday Trans. 88, 86 (1992)CrossRefGoogle Scholar
10.Mathur, A. private communication.Google Scholar
11.Kotula, P.G., Keenan, M.R., Michael, J.R.Automated analysis of SEM x-ray spectral images: A powerful new microanalysis tool. Microsc. Microanal. 8, 1 (2003)CrossRefGoogle Scholar
12.Herrmann, G., Gleiter, H., Baro, G.Investigation of low-energy grain boundaries in metals by a sintering technique. Acta Metall. 24, 353 (1976)Google Scholar
13.Gao, Y., Dregia, S.A., Shewmon, P.G.Energy and structure of (001) twist interphase boundaries in the Ag/Ni system. Acta Metall. 37, 1627 (1989)CrossRefGoogle Scholar
14.Gao, Y., Shewmon, P., Dregia, S.A.Coincidence interphase boundaries in the MgO/Ni system. Scr. Metall. 22, 1521 (1988)Google Scholar
15.Fecht, H.J., Gleiter, H.A lock-in model for the atomic-structure of the interphase boundaries between metals and ionic-crystals. Acta Metall. 33, 557 (1985)CrossRefGoogle Scholar
16.Sutton, A.P., Balluffi, R.W.Overview 61. On geometric criteria for low interfacial energy. Acta Metall. 35, 2177 (1987)CrossRefGoogle Scholar
17.Trampert, A., Ploog, K.H.Heteroepitaxy of large-misfit systems: Role of coincidence lattice. Cryst. Res. Technol. 35, 793 (2000)3.0.CO;2-3>CrossRefGoogle Scholar
18.Lin, Z., Bristowe, P.D.Microscopic characteristics of the Ag(111)/ZnO(0001) interface present in optical coatings. Phys. Rev. B 75, 205423 (2007)Google Scholar
19.Phillips, C.L., Bristowe, P.D.First principles study of the adhesion asymmetry of a metal/oxide interface. J. Mater. Sci. 43, 3960 (2008)CrossRefGoogle Scholar
20.Muller, D.A., Shashkov, D.A., Benedek, R., Yang, L.H., Xilcox, J., Seidman, D.N.Atomic scale observations of metal-induced gap states at {222}MgO/Cu interfaces. Phys. Rev. Lett. 80, 4741 (1998)Google Scholar
21.Reichel, F., Jeurgens, L.P.H., Richter, G., van Aken, P.A., Mittemeijer, E.J.The origin of high-mismatch orientation relationships for ultra-thin oxide overgrowths. Acta Mater. 55, 6027 (2007)CrossRefGoogle Scholar
22.Saylor, D.M., El Dasher, B.S., Rollett, A.D., Rohrer, G.S.Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater. 52, 3649 (2004)CrossRefGoogle Scholar
23.Floro, J.A., Thompson, C.V., Carel, R., Bristowe, P.D.Competition between strain and interface energy during epitaxial grain-growth in Ag films on Ni(001). J. Mater. Res. 9, 2411 (1994)CrossRefGoogle Scholar
24.Ahuja, R., Fast, L., Eriksson, O., Wills, J.M., Johansson, B.Elastic and high pressure properties of ZnO. J. Appl. Phys. 83, 8065 (1998)CrossRefGoogle Scholar
25.Vrijmoeth, J., van der Vegt, H.A., Meyer, J.A., Vlieg, E., Behm, R.J.Surfactant-induced layer-by-layer growth of Ag on Ag(111)—Origins and side-effects. Phys. Rev. Lett. 72, 3843 (1994)Google Scholar
26.Costantini, G., Buatier de Monegeot, F., Boragno, C., Valbusa, U.Temperature dependent reentrant smooth growth in Ag(001) homoepitaxy. Surf. Sci. 459, L487 (2000)Google Scholar
27.Yu, B.D., Scheffler, M.Ab initio study of step formation and self-diffusion ion Ag(100). Phys. Rev. B 55, 13916 (1997)CrossRefGoogle Scholar
28.Copetti, C.A., Schubert, J., Klushin, A.M., Bauer, S., Zander, W., Buchal, Ch., Seo, J.W., Sanchez, F., Bauer, M.Graphoepitacy of CeO2 on MgO and its application to the fabrication of 45-degrees grain-boundary Josephson-junctions of YBa2Cu3O7–x. J. Appl. Phys. 78, 5058 (1995)CrossRefGoogle Scholar
29.Smith, D.A., Wetzel, J.T., Taranko, A.R.Surface relief and the orientation of vapor deposited filmsLayered Structures, Epitaxy, and Interfaces edited by J.M. Gibson and L.R Dawson (Mater. Res. Soc. Symp. Proc 37, Warrendale, PA 1985)77Google Scholar