Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T09:02:54.525Z Has data issue: false hasContentIssue false

Poisson’s ratio and fragility of bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

J.H. Na
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
E.S. Park
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
Y.C. Kim
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea; and Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST), Cheongryang, Seoul 130-136, Korea
E. Fleury
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea; and Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST), Cheongryang, Seoul 130-136, Korea
W.T. Kim
Affiliation:
Department of Physics, Chongju University, Chongju 360-764, Korea
D.H. Kim*
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
*
a) Address all correspondence to this author. e-mail:[email protected]
Get access

Abstract

The correlation among apparent global plasticity, Poisson’s ratio, and fragility in monolithic bulk metallic glass (BMG) alloys has been investigated in the present study. The shear and bulk moduli in monolithic Cu-based BMG alloys have been measured by resonant ultrasound spectroscopy (RUS) and ultrasonic technique. The Cu43Zr43Al7Ag7 BMG alloy showing a large apparent global plasticity (∼8%) exhibits a high Poisson’s ratio when compared with that of Cu43Zr43Al7Be7 BMG alloy. In addition, the fragility of Cu-based BMG alloys can be obtained by differential scanning calorimetry (DSC). The fragility index m of Cu43Zr43Al7Ag7 BMG alloy is slightly larger than that of Cu43Zr43Al7Be7 BMG alloy. The correlation between Poisson’s ratio and fragility in BMG alloys can be presented by a simple relation of m − 17 = 14 (B/G − 1). Poisson’s ratio and fragility might be regarded as an important parameter that controls global plasticity of glass-forming alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ma, E.: Nanocrystalline materials—Controlling plastic instability. Nat. Mater. 2, 7 2003CrossRefGoogle Scholar
2Hufnagel, T.C., Fan, C., Ott, R.T., Li, J.Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 2002CrossRefGoogle Scholar
3Lee, M.H., Bae, D.H., Kim, D.H.Sordelet, D.J.: Synthesis of Ni-based bulk metallic glass matrix composites containing ductile brass phase by warm extrusion of gas atomized powders. J. Mater. Res. 18, 2101 2003CrossRefGoogle Scholar
4Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed
5Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H.Kim, Y.C.: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Met. Mater. Int. 10, 575 2004CrossRefGoogle Scholar
6Park, J.M., Chang, H.J., Han, K.H., Kim, W.T.Kim, D.H.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scripta Mater. 53, 1 2005CrossRefGoogle Scholar
7Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X.Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 2007CrossRefGoogle ScholarPubMed
8Lewandowski, J.J., Wang, W.H.Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 2005CrossRefGoogle Scholar
9Park, E.S., Na, J.H.Kim, D.H.: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys. Appl. Phys. Lett. 91, 031907 2007CrossRefGoogle Scholar
10Novikov, V.N.Sokolov, A.P.: Poisson’s ratio and the fragility of glass-forming liquids. Nature 43, 961 2004CrossRefGoogle Scholar
11Novikov, V.N., Ding, Y.Sokolov, A.P.: Correlation of fragility and Poisson’s ratio: Difference between metallic and nonmetallic glass formers. Phys. Rev. B 74, 064203 2006CrossRefGoogle Scholar
12Sokolov, A.P., Novikov, V.N.Kishiuk, A.: Fragility and mechanical moduli: Do they really correlate? Philos. Mag. 87, 613 2007CrossRefGoogle Scholar
13Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E.Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 2005CrossRefGoogle Scholar
14Migliori, A., Sarrao, J.L., Visscher, W.M., Bell, T.M., Lei, M., Fisk, Z.Leisure, R.G.: Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Phys. B (Amsterdam) 183, 1 1993CrossRefGoogle Scholar
15Angell, C.A.: Relaxation in liquids, polymers and plastic crystals-strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13 1991CrossRefGoogle Scholar
16Johari, G.P.: On Poisson’s ratio of glass and liquid vitrification characteristics. Philos. Mag. 86, 1567 2006CrossRefGoogle Scholar
17Böhmer, R.Angell, C.A.: Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge–As–Se supercooled liquids. Phys. Rev. B 45, 10091 1992CrossRefGoogle ScholarPubMed
18Busch, R., Bakke, E.Johnson, W.L.: Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 1998CrossRefGoogle Scholar
19Kissinger, H.E.: Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 217 1956CrossRefGoogle Scholar
20Gu, X.J., McDermott, A.G., Poon, S.J.Shiflet, G.J.: Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 2006CrossRefGoogle Scholar
21Fan, G.J., Lavernia, E.J., Wunderlich, R.K.Fecht, H-J.: The relationship between kinetic and thermodynamic fragilities in metallic glass-forming liquids. Philos. Mag. 86, 1567 2006Google Scholar
22Johnson, W.L.Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/ 3 temperature dependence. Phys. Rev. Lett. 95, 195501 2005CrossRefGoogle Scholar
23Tanaka, H.: Relationship among glass-forming ability, fragility and short-range bond ordering of liquids. J. Non-Cryst. Solids. 351, 678 2005CrossRefGoogle Scholar
24Xu, D.H., Duan, G.Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 2004CrossRefGoogle ScholarPubMed
25Choi-Yim, H., Xu, D.H.Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030 2003CrossRefGoogle Scholar
26Wang, W.H.: Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 2006CrossRefGoogle Scholar
27Fan, G.J., Freels, M., Choo, H., Liaw, P.K., Li, J.J.Z., Rhim, W-K., Johnson, W.L., Yu, P.Wang, W.H.: Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys. Appl. Phys. Lett. 89, 241917 2006CrossRefGoogle Scholar
28Busch, R., Liu, W.Johnson, W.L.: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134 1998CrossRefGoogle Scholar
29Nishiyama, N., Inoue, A.Jiang, J.Z.: Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region. Appl. Phys. Lett. 78, 1985 2001CrossRefGoogle Scholar
30Falk, M.L.Langer, J.S.: From simulation to theory in the physics of deformation and fracture. MRS Bull. 402000CrossRefGoogle Scholar
31Schuh, C.A.Lund, A.C.: Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 2003CrossRefGoogle ScholarPubMed
32Langer, J.S.: Shear-transformation-zone theory of deformation in metallic glasses. Scripta Mater. 54, 375 2006CrossRefGoogle Scholar
33Zink, M., Samwer, K., Johnson, W.L.Mayr, S.G.: Plastic deformation of metallic glasses: Size of shear transformation zones from molecular dynamics simulations. Phys. Rev. B 73, 172203 2006CrossRefGoogle Scholar
34Vilgis, T.A.: Strong and fragile glasses: A powerful classification and its consequences. Phys. Rev. B 47, 2882 1993CrossRefGoogle ScholarPubMed
35Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977CrossRefGoogle Scholar
36Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L., Goddard, W.A. III, Cain, T.Samwer, K.: Strong configurational dependence of elastic properties for a binary model metallic glass. Appl. Phys. Lett. 89, 151901 2006CrossRefGoogle Scholar
37Wang, W.H., Wang, R.J., Li, F.Y., Zhao, D.Q.Pan, M.X.: Elastic constants and their pressure dependence of Zr41Ti14Cu12.5Ni9Be22.5C1 bulk metallic glass. Appl. Phys. Lett. 74, 1803 1999CrossRefGoogle Scholar
38Battezzati, L.: Is there a link between melt fragility and elastic properties of metallic glasses? Mater Trans. 46, 2915 2005CrossRefGoogle Scholar