Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:06:36.919Z Has data issue: false hasContentIssue false

Plasticity of bulk metallic glasses improved by controlling the solidification condition

Published online by Cambridge University Press:  31 January 2011

Z.W. Zhu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
S.J. Zheng*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
H.F. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
B.Z. Ding
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Z.Q. Hu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
P.K. Liaw
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200
Y.D. Wang
Affiliation:
School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China
Y. Ren
Affiliation:
Experimental Facilities Division, Advanced Phonon Source, Argonne National Laboratory, Argonne, Illinois 60439
*
a)Address all correspondence to this author. e-mail:[email protected]
Get access

Abstract

Different bulk metallic glasses (BMGs) were prepared in ductile Cu47.5Zr47.5Al5, Zr62Cu15.4Ni12.6Al10, and brittle Zr55Ni5Al10Cu30 alloys by controlling solidification conditions. The achieved microstructures were characterized by x-ray diffraction, differential scanning calorimetry, transmission electron microscopy, and synchrotron- based high-energy x-ray diffraction. Monolithic BMGs obtained by high-temperature injection casting are brittle, while BMGs bearing some nanocrystals with the size of 3 to 7 nm and 2 to 4 nm, obtained by low-temperature injection casting and in situ suction casting, respectively, exhibit good plasticity. It indicates that the microstructures of BMGs are closely affected by the solidification conditions. Controlling the solidification conditions could improve the plasticity of BMGs.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 1999CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279 2000CrossRefGoogle Scholar
3Wang, W.H., Dong, C.Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44(2–3), 45 2004CrossRefGoogle Scholar
4Peker, A.Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63(17), 2342 1993CrossRefGoogle Scholar
5Inoue, A., Zhang, T., Nishiyama, N., Ohba, K.Masumoto, T.: Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. Trans., JIM 34(12), 1234 1993CrossRefGoogle Scholar
6Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X.Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315 (5817), 1385 2007CrossRefGoogle Scholar
7Bae, D.H., Lee, S.W., Kwon, J.W., Wang, X.D.Yi, S.: Ductile Zr-base bulk metallic glass. Mater. Sci. Eng., A 449–451, 111 2007CrossRefGoogle Scholar
8Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93(25), 255506 2004CrossRefGoogle ScholarPubMed
9Dong, W., Zhang, H., Cai, J., Sun, W., Wang, A., Li, H.Hu, Z.: Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates. J. Alloys Compd. 425(1–2), L1 2006CrossRefGoogle Scholar
10Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H.Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88(5), 051911 2006CrossRefGoogle Scholar
11Qiang, J.B., Zhang, W., Xie, G.Q.Inoue, A.: Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles. Appl. Phys. Lett. 90(23), 231907 2007CrossRefGoogle Scholar
12Chen, M.W., Inoue, A., Zhang, W.Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96(24), 245502 2006CrossRefGoogle ScholarPubMed
13Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z.Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scripta Mater. 54(6), 1145 2006CrossRefGoogle Scholar
14Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H.Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94(20), 205501 2005CrossRefGoogle ScholarPubMed
15Kato, H., Hirano, T., Matsuo, A., Kawamura, Y.Inoue, A.: High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles. Scripta Mater. 43(6), 503 2000CrossRefGoogle Scholar
16Saboungi, M.L., Blomquist, R., Volin, K.J.Price, D.L.: Structure of liquid equiatomic potassium-lead alloy: A neutron diffraction experiment. J. Chem. Phys. 87(4), 2278 1987CrossRefGoogle Scholar
17Hoyer, W.Jödicke, R.: Short-range and medium-range order in liquid Au–Ge alloys. J. Non-Cryst. Solids 192–193, 102 1995CrossRefGoogle Scholar
18Simonet, V., Hippert, F., Audier, M.Bellissent, R.: Local order in liquids forming quasicrystals and approximant phases. Phys. Rev. B 65(2), 024203 2001CrossRefGoogle Scholar
19Li, H.: Influence of intermediate-range order on glass formation. J. Phys. Chem. B 108(17), 5438 2004Google Scholar
20Schenk, T., Simonet, V., Holland-Moritz, D.Bellissent, R.: Temperature dependence of the chemical short-range order in undercooled and stable Al–Fe–Co liquids. Europhys. Lett. 65(1), 34 2004CrossRefGoogle Scholar
21Assadi, H.Schroers, J.: Crystal nucleation in deeply undercooled melts of bulk metallic glass forming systems. Acta Mater. 50(1), 89 2002CrossRefGoogle Scholar
22Inoue, A., Shibat, T.Zhang, T.: Effect of additional elements on glass transition behavior and glass formation tendency of Zr–Al–Cu–Ni alloys. Mater. Trans., JIM 36(12), 1420 1995CrossRefGoogle Scholar
23Fan, G.J., Fu, L.F., Wang, Y.D., Ren, Y., Choo, H., Liaw, P.K., Wang, G.Y.Browning, N.D.: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy x-ray diffraction technique. Appl. Phys. Lett. 89(10), 101918 2006CrossRefGoogle Scholar
24Fan, G.J., Wang, Y.D., Fu, L.F., Choo, H., Liaw, P.K., Ren, Y.Browning, N.D.: Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. Appl. Phys. Lett. 88(17), 171914 2006CrossRefGoogle Scholar
25Lewandowski, J.J.Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5(1), 15 2006CrossRefGoogle Scholar
26Yang, B., Morrison, M.L., Liaw, P.K., Buchanan, R.A., Wang, G.Y., Liu, C.T.Denda, M.: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86(14), 141904 2005CrossRefGoogle Scholar
27Ma, E.: Nanocrystalline materials—controlling plastic instability. Nat. Mater. 2(1), 7 2003CrossRefGoogle Scholar
28Huang, Y.J., Shen, J.Sun, J.F.: Bulk metallic glasses: smaller is softer. Appl. Phys. Lett. 90(8), 081919 2007CrossRefGoogle Scholar