Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T14:19:10.579Z Has data issue: false hasContentIssue false

Plastic deformation of nanocrystalline copper-antimony alloys

Published online by Cambridge University Press:  31 January 2011

Ashok Saxena
Affiliation:
Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701
Get access

Abstract

Molecular dynamics simulations are used to evaluate the influence of Sb dopant atoms at the grain boundaries on plastic deformation of nanocrystalline Cu. Deformation is conducted under uniaxial tensile loading, and Sb atoms are incorporated as substitutional defects at the grain boundaries. The presence of randomly dispersed Sb atoms at the grain boundaries does not appreciably influence the mechanisms associated with dislocation nucleation in nanocrystalline Cu; grain boundary ledges and triple junctions still dominate as partial dislocation sources. However, the magnitude of the tensile stress associated with the partial dislocation nucleation event does increase with increasing Sb concentration and also with increasing grain size. The flow stress of nanocrystalline Cu increases with increasing Sb concentration up to 1.0 at.% Sb, with a maximum observed at a grain size of 15 nm for all Sb concentrations (0.0–2.0 at.% Sb).

Type
Outstanding Symposium Paper
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kumar, K.S., Van Swygenhoven, H., Suresh, S.Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003)CrossRefGoogle Scholar
2.Weertman, J.R.Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng., A 166, 161 (1993)CrossRefGoogle Scholar
3.Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., Ma, E.Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007)CrossRefGoogle Scholar
4.Gertsman, V.Y., Birringer, R.On the room-temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 30, 577 (1994)CrossRefGoogle Scholar
5.Pantleon, K., Somers, M.A.J.In situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature. J. Appl. Phys. 100, 114319 (2006)CrossRefGoogle Scholar
6.Detavernier, C., Deduytsche, D., Van Meirhaeghe, R.L., De Baerdemaeker, J., Dauwe, C.Room-temperature grain growth in sputter-deposited Cu films. Appl. Phys. Lett. 82, 1863 (2003)CrossRefGoogle Scholar
7.Millett, P.C., Selvam, R.P., Saxena, A.Stabilizing nanocrystalline materials with dopants. Acta Mater. 55, 2329 (2007)CrossRefGoogle Scholar
8.Kirchheim, R.Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002)CrossRefGoogle Scholar
9.Rajgarhia, R.K., Spearot, D.E., Saxena, A., Hartwig, K.T., More, K.L., Kenik, E., Meyer, H.Microstructural stability of nanocrystalline copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations. Acta Mater. (2010 submitted )Google Scholar
10.Van Swygenhoven, H., Weertman, J.R.Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006)CrossRefGoogle Scholar
11.Van Swygenhoven, H., Caro, A., Farkas, D.Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: A molecular dynamics study. Scr. Mater. 44, 1513 (2001)CrossRefGoogle Scholar
12.Van Swygenhoven, H., Derlet, P.M., Froseth, A.G.Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54, 1975 (2006)CrossRefGoogle Scholar
13.Van Swygenhoven, H., Derlet, P.D.Atomistic simulations of dislocations in FCC metallic nanocrystalline materialsDislocations in Solids Vol. 14 (Elsevier 2008)142Google Scholar
14.Van Swygenhoven, H.Grain boundaries and dislocations. Science 296, 66 (2002)CrossRefGoogle ScholarPubMed
15.Schiotz, J., Jacobsen, K.W.A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003)CrossRefGoogle ScholarPubMed
16.Schiotz, J.Atomic-scale modeling of plastic deformation of nanocrystalline copper. Scr. Mater. 51, 837 (2004)CrossRefGoogle Scholar
17.Schiotz, J.Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Mater. Sci. Eng., A 375–377, 975 (2004)CrossRefGoogle Scholar
18.Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., Gleiter, H.Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004)CrossRefGoogle ScholarPubMed
19.Derlet, P.M., Van Swygenhoven, H.Length scale effects in the simulation of deformation properties of nanocrystalline metals. Scr. Mater. 47, 719 (2002)CrossRefGoogle Scholar
20.Derlet, P.M., Hasnaoui, A., Van Swygenhoven, H.Atomistic simulations as guidance to experiments: Viewpoint set No. 31. Scr. Mater. 49, 629 (2003)CrossRefGoogle Scholar
21.Farkas, D., Willemann, M., Hyde, B.Atomistic mechanisms of fatigue in nanocrystalline metals. Phys. Rev. Lett. 94, 165502 (2005)CrossRefGoogle ScholarPubMed
22.Pan, Z., Li, Y., Wei, Q.Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Mater. 56, 3470 (2008)CrossRefGoogle Scholar
23.Vo, N.Q., Averback, R.S., Bellon, P., Caro, A.Yield strength in nanocrystalline Cu during high strain rate deformation. Scr. Mater. 61, 76 (2009)CrossRefGoogle Scholar
24.Vo, N.Q., Averback, R.S., Bellon, P., Odunuga, S., Caro, A.Quantitative description of plastic deformation in nanocrystalline Cu: dislocation glide versus grain boundary sliding. Phys. Rev. B: Condens. Matter 77, 134108 (2008)CrossRefGoogle Scholar
25.Ungar, T., Ott, S., Sanders, P.G., Borbely, A., Weertman, J.R.Dislocations, grain size and planar faults in nanostructured copper determined by high resolution x-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 46, 3693 (1998)CrossRefGoogle Scholar
26.Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., Wang, P.Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003)CrossRefGoogle Scholar
27.Mompiou, F., Caillard, D., Legros, M.Grain boundary shear-migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57, 2198 (2009)CrossRefGoogle Scholar
28.Pande, C.S., Masumura, R.A.Deformation and cable creep of nanocrystalline materials Nanomaterials for Structural Applications edited by C.C. Berndt, T.E. Fischer, I. Ovid'ko, G. Skandan, and T. Tsakalakos (Mater. Res. Soc. Symp. Proc 740, Warrendale, PA 2003)l1.1.Google Scholar
29.Shan, Z., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., Mao, S.X.Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004)CrossRefGoogle ScholarPubMed
30.Argon, A.S., Yip, S.The strongest size. Philos. Mag. Lett. 86, 713 (2006)CrossRefGoogle Scholar
31.Capolungo, L., Spearot, D.E., Cherkaoui, M., McDowell, D.L., Qu, J., Jacob, K.I.Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation. J. Mech. Phys. Solids 55, 2300 (2007)CrossRefGoogle Scholar
32.Van Swygenhoven, H., Derlet, P.M., Froseth, A.G.Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004)CrossRefGoogle ScholarPubMed
33.Kelchner, C.L., Plimpton, S.J., Hamilton, J.C.Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B: Condens. Matter 58, 11085 (1998)CrossRefGoogle Scholar
34.Hall, E.O.The deformation and aging of mild steel. Proc. R. Soc. London, Ser. B 64, 747 (1951)CrossRefGoogle Scholar
35.Petch, N.J.Cleavage strength of polycrystals. Iron and Steel Institute Journal 174, 25 (1953)Google Scholar
36.Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., Gleiter, H.Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials. Philos. Mag. Lett. 83, 385 (2003)CrossRefGoogle Scholar
37.Jang, S., Purohit, Y., Irving, D., Padgett, C., Brenner, D., Scattergood, R.O.Molecular dynamics simulations of deformation in nanocrystalline Al-Pb alloys. Mater. Sci. Eng., A 493, 53 (2008)CrossRefGoogle Scholar
38.Jang, S., Purohit, Y., Irving, D.L., Padgett, C., Brenner, D., Scattergood, R.O.Influence of Pb segregation on the deformation of nanocrystalline Al: Insights from molecular simulations. Acta Mater. 56, 4750 (2008)CrossRefGoogle Scholar
39.Schaffer, J.P., Saxena, A., Sanders, J.T.H., Stephen Antolovich, D., Warner, S.B.Science and Design of Engineering Materials (McGraw-Hill Science, Boston 2000)Google Scholar
40.Yamakov, V., Wolf, D., Salazar, M., Phillpot, S.R., Gleiter, H.Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49, 2713 (2001)CrossRefGoogle Scholar
41.Voronoi, G.Z.Nouvelles applications des paramètres continus à la théorie de formes quadratiques. Reine Angew Math. 134, 199 (1908)Google Scholar
42.Derlet, P.M., Van Swygenhoven, H.Atomic positional disorder in fcc metal nanocrystalline grain boundaries. Phys. Rev. B: Condens. Matter 67, 14202–1 (2003)CrossRefGoogle Scholar
43.Froseth, A.G., Van Swygenhoven, H., Derlet, P.M.Developing realistic grain boundary networks for use in molecular dynamics simulations. Acta Mater. 53, 4847 (2005)CrossRefGoogle Scholar
44.Mackenzie, J.K.Second paper on statistics associated with the random disorientation of cubes. Biometrika 45, 229 (1958)CrossRefGoogle Scholar
45.Dalla Torre, F., Lapovok, R., Sandlin, J., Thomson, P.F., Davies, C.H.J., Pereloma, E.V.Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes. Acta Mater. 52, 4819 (2004)CrossRefGoogle Scholar
46.Dalla Torre, F.H., Gazder, A.A., Pereloma, E.V., Davies, C.H.J.Recent progress on the study of the microstructure and mechanical properties of ECAE copper. J. Mater. Sci. 42, 1622 (2007)CrossRefGoogle Scholar
47.Plimpton, S.Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)CrossRefGoogle Scholar
48.Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D.Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B: Condens. Matter 63, 224106–1 (2001)CrossRefGoogle Scholar
49.Zimmerman, J.A., Gao, H., Abraham, F.F.Generalized stacking fault energies for embedded atom FCC metals. Modell. Simul. Mater. Sci. Eng. 8, 103 (2000)CrossRefGoogle Scholar
50.Rice, J.R.Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992)CrossRefGoogle Scholar
51.Hoover, W.G.Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, Gen. Phys. 31, 1695 (1985)CrossRefGoogle ScholarPubMed
52.Melchionna, S., Ciccotti, G., Holian, B.L.Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533 (1993)CrossRefGoogle Scholar
53.Rajgarhia, R.K., Spearot, D.E., Saxena, A.Interatomic potential for copper-antimony in dilute solid-solution alloys and application to single crystal dislocation nucleation. Comput. Mater. Sci. 49, 1258 (2009)CrossRefGoogle Scholar
54.Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiseer, K., Kelley, K.K.Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH 1973)Google Scholar
55.Leach, A.Molecular Modelling: Principles and Applications (Prentice Hall 2001)Google Scholar
56.Staley, J.T. Jr., Saxena, A.Mechanisms of creep crack growth in 1 wt% antimony-copper: Implications for fracture parameters. Acta Metall. Mater. 38, 897 (1990)CrossRefGoogle Scholar
57.Spearot, D.E., Jacob, K.I., McDowell, D.L.Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plast. 23, 143 (2007)CrossRefGoogle Scholar
58.Tschopp, M.A., Spearot, D.E., McDowell, D.L.Influence of grain boundary structure on dislocation nucleation in FCC metalsDislocations in Solids Vol. 14 edited by J.P. Hirth (Elsevier, London 2008) Chap. 82Google Scholar
59.Allen, M.P., Tildesley, D.J.Computer Simulation of Liquids (Oxford University Press 1989)Google Scholar
60.Rajgarhia, R.K., Spearot, D.E., Saxena, A.Heterogeneous dislocation nucleation in single crystal copper-antimony solid-solution alloys. Modell. Simul. Mater. Sci. Eng. 17, 055001 (2009)CrossRefGoogle Scholar
61.Millett, P.C., Selvam, R.P., Saxena, A.Improving grain boundary sliding resistance with segregated dopants. Mater. Sci. Eng., A 431, 92 (2006)CrossRefGoogle Scholar
62.Li, J.C.M.Mechanical grain growth in nanocrystalline copper. Phys. Rev. Lett. 96, 215506–1 (2006)CrossRefGoogle ScholarPubMed
63.Frederiksen, S.L., Jacobsen, K.W., Schiotz, J.Simulations of intergranular fracture in nanocrystalline molybdenum. Acta Mater. 52, 5019 (2004)CrossRefGoogle Scholar