Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T05:10:11.175Z Has data issue: false hasContentIssue false

Photoelectrochemical properties of titania nanotubes

Published online by Cambridge University Press:  01 October 2004

Gopal K. Mor
Affiliation:
Departments of Electrical Engineering, and Materials Science and Engineering,The Pennsylvania State University, University Park, Pennsylvania 16802
Karthik Shankar
Affiliation:
Departments of Electrical Engineering, and Materials Science and Engineering,The Pennsylvania State University, University Park, Pennsylvania 16802
Oomman K. Varghese
Affiliation:
Departments of Electrical Engineering, and Materials Science and Engineering,The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes*
Affiliation:
Departments of Electrical Engineering, and Materials Science and Engineering,The Pennsylvania State University, University Park, Pennsylvania 16802
*
a) Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

N-type nanocrystalline titania is a promising material for use in semiconductor photoelectrochemical cells and, potentially, the solar generation of hydrogen. In this study, we examined the photochemical properties of titania nanotube arrays made by anodization of a starting Ti foil in a fluoride ion containing electrolyte. The absorption properties of the titania nanotube samples were investigated using diffuse reflectance ultraviolet (UV)-visible (vis) spectroscopy, with a broadening of the absorption spectra seen as a function of material phase, nanotube diameter, and Pd sensitization. The magnitude of the anodic photocurrent obtained from the polycrystalline nanotube samples, measured under band gap UV illumination, appeared to be significantly higher than that reported for any other form of nanocrystalline titania. A maximum photoconversion efficiency (UV light exposure at 365 nm, intensity 146 mW/cm2) of 4.8% was obtained for 22 nm diameter nanotubes annealed at 500 °C and coated with a discontinuous palladium layer of 10 nm average effective thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
2Lee, M.S., Cheon, I.C. and Kim, Y.I.: Photoelectrochemical studies of nanocrystalline TiO2 film electrodes. Bull. Korean Chem. Soc. 24, 1155 (2003).Google Scholar
3Tesfamichael, T., Will, G., Bell, J., Prince, K. and Dytlewski, N.: Characterization of a commercial dye-sensitised titania solar cell electrode. Sol. Energy Mater. Sol. Cells 76, 25 (2003).Google Scholar
4Shen, Q. and Toyoda, T.: Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes. Thin Solid Films 438, 167 (2003).Google Scholar
5Gregg, B.A., Chen, S-G. and Ferrere, S.: Enhanced Dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in nanoporous TiO2. J. Phys. Chem. B 107, 3019 (2003).Google Scholar
6Nazeeruddin, M.K., Péchy, P. and Grätzel, M.: Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chem. Commun. 48, 1705 (1997).Google Scholar
7Ohno, T., Tanigawa, F., Fujihara, K., Izumi, S. and Matsumura, M.: Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. J. Photochem. Photobiol. A 127, 107 (1999).Google Scholar
8Wilke, K. and Breuer, H.D.: The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A 121, 49 (1999).Google Scholar
9Khan, S.U.M., Al-Shahry, M., Ingler, W.B. and Jr., : Efficient photochemical water spliting by a chemically modified n-TiO2. Science 297, 2243 (2002).Google Scholar
10Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tamg, Q., Saito, F. and Sato, T.: Preparation of nitrogen doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J. Mater. Chem. 13, 2996 (2003).Google Scholar
11Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O. and Sugihara, S.: Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B 42, 403 (2003).Google Scholar
12Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).Google Scholar
13Radecka, M., Gorzkowska-Sobas, A., Zakrzewska, K. and Sobas, P.: Nanocermet TiO2: Au thin films electrodes for wet electrochemical solar cells. Opto-electron. Rev. 12, 53 (2004).Google Scholar
14Chandrasekharan, N. and Kamat, P.V.: Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B 104, 10851 (2000).CrossRefGoogle Scholar
15Papp, J., Shen, H-S., Kershaw, R., Dwight, K. and Wold, A.: Titanium (IV) oxide photocatalyst with palladium. Chem. Mater. 5, 284 (1993).Google Scholar
16Zheng, S., Gao, L., Zhang, Q. and Sun, J.: Synthesis, characterization and photoactivity of nanosized palladium clusters deposited on titania modified mesoporous MCM-41. J. Solid State Chem. 162, 138 (2001).Google Scholar
17Ying, J.Y.: Nanostructured Materials (Academic Press, New York, 2001).Google Scholar
18Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).Google Scholar
19Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A. and Dickey, E.C.: Crystallization and high temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).Google Scholar
20Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A.: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 (2003).Google Scholar
21Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V. and Grimes, C.A.: A room temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).Google Scholar
22Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A.: A self-cleaning room temperature titania-nanotube hydrogen gas sensor. Sensor Lett. 1, 42 (2003).Google Scholar
23Varghese, O.K., Mor, G.K., Grimes, C.A., Paulose, M., and Mukherjee, N.: A titania nanotube-array room temperature sensor for selective detection of hydrogen at low concentration. J. Nanosci. Nanotechnol. (2004, in press).CrossRefGoogle Scholar
24Lindgren, T., Vayssieres, L., Wang, H. and Lindquist, S-E. Photooxidation of Water at Hematite Electrodes, in Chemical Physics of Nanostructured Semiconductors, edited by Kokorin, A.I. and Bahnemann, D.W. (VSP BV, Eindhoven, The Netherlands, 2003), Chap. 3Google Scholar
25Lindgren, T. In Search of the Holy Grail of Photoelectrochemistry: A Study of Thin Film Electrodes for Solar Hydrogen Generation. 2004, PhD. Thesis, Uppsala University, Uppsala, Sweden.Google Scholar
26Fukushima, A., Hashimoto, K. and Watanabe, T.: TiO2 Photocatalysis – Fundamentals and Applications, 1st ed. (BKC, Inc., Tokyo, Japan, 1999).Google Scholar
27Zhao, J.P., Chen, Z.Y. and Rabalais, J.W.: Dose dependence of surface plasmon resonance of a Ti–SiO2 nanoparticle composite. J. Chem. Phys. 119, 1909 (2003).CrossRefGoogle Scholar
28Bahnemann, D.W., Dillert, R. and Robertson, P.K.J. Photocatalysis: Initial Reaction Steps, in Chemical Physics of Nanostructured Semiconductors, edited by Kokorin, A.I. and Bahnemann, D.W. (VSP BV, Eindhoven, The Netherlands, 2003), Chap. 7Google Scholar
29Wahl, A. and Augustynski, J.: Charge-carrier transport in nanostructured anatase TiO2 films assisted by the self-doping of nanoparticles. J. Phys. Chem. B 102, 7820 (1998).CrossRefGoogle Scholar
30Södergren, S., Hagfeldt, A., Olsson, J. and Lindquist, S.E.: Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 98, 5552 (1994).Google Scholar
31Oliva, F.Y., Avalle, L.B., Santos, E. and Cámaral, O.R.: Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. J. Photochem. Photobiol. A 146, 175 (2002).Google Scholar
32Palombari, R., Ranchella, M., Rol, C. and Sebastiani, G.V.: Oxidative photoelectrochemical technology with Ti/TiO2 anodes. Sol. Energy Mater. Sol. Cells 71, 359 (2002).Google Scholar
33Jaksic, M.M.: Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions. Int. J. Hydrogen Energy 26, 559 (2001).CrossRefGoogle Scholar