Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T06:58:42.688Z Has data issue: false hasContentIssue false

Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization

Published online by Cambridge University Press:  07 April 2016

Jingting Liu
Affiliation:
Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Jingbo Zhang*
Affiliation:
Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To improve photocatalytic activity of TiO2, 3-hexylthiophene monomers were in situ polymerized on porous TiO2 nanocrystalline thin film. Poly-3-hexylthiophene (P3HT) was homogenously modified on the thin film. The surface modification amounts of P3HT were controlled using different concentrations of 3-hexylthiophene monomer ether solutions and detected by the absorption spectra. The photocatalytic performance tested in methyl orange solution under ultraviolet light irradiation was significantly enhanced due to the modification of P3HT. Within 210 min, approximately 80% of methyl orange was degraded for the modified film with the optimized modification amount, it is twice higher than that of the film without modification. Photoluminescence spectra and open-circuit voltage decay processes of the samples were measured to demonstrate the photocatalytic activity enhancement mechanism due to the in-situ polymerization of P3HT. The homogenous modification of P3HT can promote separation of photogenerated electron–hole pairs on the TiO2 nanocrystalline thin film, which suppresses the recombination of photogenerated charge carriers, thus improving its photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chang, J.A., Rhee, J.H., Sang, H.I., Yong, H.L., Kim, H.J., Sang, I. S., Nazeeruddin, M.K., and Grätzel, M.: High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett. 10, 2609 (2010).CrossRefGoogle ScholarPubMed
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).CrossRefGoogle ScholarPubMed
Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., and Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).Google Scholar
Adesanya, V.O., Davey, M.P., Scott, S.A., and Smith, A.G.: Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale 7, 2471 (2015).Google Scholar
Chen, C.C., Ma, W.H., and Zhao, J.C.: Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39, 4206 (2010).CrossRefGoogle ScholarPubMed
Yang, G., Jiang, Z., Shi, H., Xiao, T., and Yan, Z.: Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301 (2010).Google Scholar
Liu, M., Piao, L., Zhao, L., Ju, S., Yan, Z., He, T., Zhou, C., and Wang, W.: Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chem. Commun. 46, 1664 (2010).Google Scholar
Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).CrossRefGoogle ScholarPubMed
Cao, S., Low, J., Yu, J., and Jaroniec, M.: Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150 (2015).Google Scholar
Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).Google Scholar
Li, X., Xia, T., Xu, C., Murowchick, J., and Chen, X.: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225(15), 64 (2014).CrossRefGoogle Scholar
Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114(19), 9890 (2014).Google Scholar
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).Google Scholar
He, Z., Xie, L., Song, S., Wang, C., Tu, J., and Hong, F.: The impact of silver modification on the catalytic activity of iodine-doped titania for p-chlorophenol degradation under visible-light irradiation. J. Mol. Catal. A: Chem. 319, 78 (2010).CrossRefGoogle Scholar
Liu, M., You, W., Lei, Z., Zhou, G., Yang, J., and Wu, G.: Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem. Commun. 10, 2192 (2004).Google Scholar
Rodríguez-González, V., Zanella, R., Angel, G.D., and Gómez, R.: MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2–Al2O3 sol–gel prepared catalysts. J. Mol. Catal. A: Chem. 281, 93 (2008).CrossRefGoogle Scholar
Yu, J., Xiong, J., Cheng, B., and Liu, S.: Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal., B 60, 211 (2005).Google Scholar
Liu, P., Li, W.Y., Zhang, J.B., and Lin, Y.: Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2. J. Mater. Res. 26, 1532 (2010).CrossRefGoogle Scholar
Schilinsky, P., Asawapirom, U., Scherf, U., Biele, M., and Brabec, C.: Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem. Mater. 17, 2175 (2005).Google Scholar
Ballantyne, A.M., Chen, L., Dane, J., Hammant, T.C., Braun, F.X., Heeney, M., Duffy, W., McCuiioch, I., Bradley, D.D.C., and Nelson, J.: The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer: Fullerene solar cells. Adv. Funct. Mater. 18, 2373 (2008).CrossRefGoogle Scholar
Zhang, J.L., Cao, S.Q., Xu, S.B., Yang, H.G., Yang, L., Song, Y.Q., Jiang, L., and Dan, Y.: Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst. Appl. Surf. Sci. 349, 650 (2015).Google Scholar
Zhang, J.L., Yang, H.G., Xu, S.B., Yang, L., Song, Y.Q., Jiang, L., and Dan, Y.: Dramatic enhancement of visible light photocatalysis due to strong interaction between TiO2 and end-group functionalized P3HT. Appl. Catal., B 174, 193 (2015).Google Scholar
Xu, S.B., Gu, L.X., Wu, K.H., Yang, H.G., Song, Y.Q., Jiang, L., and Dan, Y.: The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. Sol. Energy Mater. Sol. Cells 96, 286 (2012).Google Scholar
Liao, G.Z., Chen, S., Quan, X., Chen, H., and Zhang, Y.B.: Photonic crystal coupled TiO2/polymer hybrid for efficient photocatalysis under visible light irradiation. Environ. Sci. Technol. 44, 3481 (2010).CrossRefGoogle Scholar
Al-Ibrahim, M., Rotha, H.K., Zhokhavetsb, U., Gobsch, G., and Sensfuss, S.: Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Energy Mater. Sol. Cells 85, 13 (2005).Google Scholar
Zhu, Y. and Dan, Y.: Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange. Sol. Energy Mater. Sol. Cells 94, 1658 (2010).Google Scholar
Muktha, B., Mahanta, D., Patil, S., and Madras, G.: Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. J. Solid State Chem. 180, 2986 (2007).CrossRefGoogle Scholar
Zhao, F.Y., Tang, G.S., Zhang, J.B., and Lin, Y.: Improved performance of CdSe quantum dot-sensitized TiO2 thin film by surface treatment with TiCl4. Electrochim. Acta 62, 396 (2012).Google Scholar
Kim, Y., Cook, S., Tuladhar, S., Choulls, S., Nelson, J., Durrant, J., Bradley, D. D.C., Giles, M., Mcculloch, I., Ha, C.S., and Ree, M.: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat. Mater. 5, 197 (2006).Google Scholar
Zhang, J. and Zaban, A.: Efficiency enhancement in dye-sensitized solar cells by in situ passivation of the sensitized nanoporous electrode with Li2CO3. Electrochim. Acta 53, 5670 (2008).Google Scholar
Jing, L., Qu, Y., Wang, B., Li, S., Jiang, B., Yang, L., Wei, F., Fu, H., and Sun, J.: Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773 (2006).Google Scholar
Iijima, K., Goto, M., Enomoto, S., Kunugita, H., Ema, K., Tsukamoto, M., Sakama, H., and Ichikawa, N.: Influence of oxygen vacancies on optical properties of anatase TiO2 thin films. J. Lumin. 128, 911 (2008).CrossRefGoogle Scholar
Lin, Y.Y., Chu, T.H., Chen, C.W., and Su, W.F.: Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification. Appl. Phys. Lett. 92, 053312 (2008).Google Scholar
Yang, H., Li, P., Zhang, J. B., and Lin, Y.: TiO2 compact layer for dye-sensitized SnO2 nanocrystalline thin film. Electrochim. Acta 147, 366 (2014).Google Scholar
Bisquert, J., Zaban, A., Greenshtein, M., and Mora-Sero, I.: Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem. Soc. 126, 13550 (2004).CrossRefGoogle ScholarPubMed
Wang, M., Sun, L., Lin, Z., Cai, J., Xie, K., and Lin, C.: p–n heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 6, 1211 (2013).Google Scholar
Kou, T., Jin, C., Zhang, C., Sun, J., and Zhang, C.: Nanoporous core–shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange. RSC Adv. 2, 12636 (2012).Google Scholar