Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T23:22:05.006Z Has data issue: false hasContentIssue false

Photoanode characteristics of dye-sensitized solar cell containing TiO2 layers with different crystalline orientations

Published online by Cambridge University Press:  31 January 2011

Mamiko Kawakita
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047, Japan; and Nano Ceramics Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
Jin Kawakita*
Affiliation:
Composites and Coatings Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
Tetsuo Uchikoshi
Affiliation:
Nano Ceramics Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
Yoshio Sakka
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047, Japan; Nano Ceramics Center, National Institute for Materials Science, Tsukuba 305-0047, Japan; and World Premier International Research Center Initiative on Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0047, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The influence of the crystalline orientation of the TiO2 photoanode on the photo-electrochemical characteristics was investigated to reveal the primary factors responsible for improving the photoelectric conversion efficiency of a dye-sensitized solar cell. It was observed that the photocurrent depended on the plane orientation, whereas the dependence of the photopotential on the open circuit was almost constant. The rate of the photoanodic reaction was attributed to the dye adsorption, depending on the surface energy of each oriented plane of the TiO2. The cathodic reaction on TiO2 during open circuit is likely to determine the rate of the entire electrochemical reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1O'Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
2Deng, H.Zhang, H. and Lu, Z.: Dye-sensitized anatase titanium dioxide nanocrystalline with (001) preferred orientation induced by Langmuir-Blodgett monolayer. Chem. Phys. Lett. 363, 509 (2002).CrossRefGoogle Scholar
3Ong, C.K. and Wang, S.J.: In situ RHEED monitor of the growth of epitaxial anatase TiO2 thin films. Appl. Surf. Sci. 185, 47 (2001).CrossRefGoogle Scholar
4Murakami, M.Matsumoto, Y.Nakajima, K.Makino, T.Segewa, Y.Chikyow, T.Ahmet, P.Kawasaki, M. and Koinuma, H.: Anatase TiO2 thin films grown on lattice-matched LaAlO3 substrate by laser molecular-beam epitaxy. Appl. Phys. Lett. 78, 2664 (2001).CrossRefGoogle Scholar
5Sumita, T.Yamaki, T.Yamamoto, S. and Miyashita, A.: Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films. Appl. Surf. Sci. 200, 21 (2002).CrossRefGoogle Scholar
6Chen, S.Mason, M.G.Gysling, H.J.Paz-Pujalt, G.R., Blanton, T.N.Castro, T.Chen, K.M.Fictorie, C.P.Gladfelter, W.L.Franciosi, A.Cohen, P.I. and Evans, J.F.: Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol., A 11, 2419 (1993).CrossRefGoogle Scholar
7Kavan, L.Grätzel, M., Gilbert, S.E.Klemenz, C. and Scheel, H.J.: Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716 (1996).CrossRefGoogle Scholar
8Hengerer, R.Kavan, L.Krtil, P. and Grätzel, M.: Orientation dependence of charge-transfer processes on TiO2 (Anatase) single crystals. J. Electrochem. Soc. 147, 1467 (2000).CrossRefGoogle Scholar
9Ruzycki, N.Herman, G.S.Boatner, L.A. and Diebold, U.: Scanning tunneling microscopy study of the anatase (100) surface. Surf. Sci. 529, L239 (2003).CrossRefGoogle Scholar
10Hebenstreit, W.Ruzycki, N.Herman, G.S.Gao, Y. and Diebold, U.: Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface. Phys. Rev. B: Condens. Matter 62, R16334 (2000).CrossRefGoogle Scholar
11Corni, I.Ryan, M.P. and Boccaccini, A.R.: Electrophoretic deposition: From traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353 (2008).CrossRefGoogle Scholar
12Besra, L. and Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1(2007).CrossRefGoogle Scholar
13Uchikoshi, T.Suzuki, T.S.Tang, F.Okuyama, H. and Sakka, Y.: Crystalline-oriented TiO2 fabricated by the electrophoretic deposition in a strong magnetic field. Ceram. Int. 30, 1975 (2004).CrossRefGoogle Scholar
14Uchikoshi, T.Suzuki, T.S.Iimura, S.Tang, F. and Sakka, Y.: Control of crystalline texture in polycrystalline TiO2 (Anatase) by electrophoretic deposition in a strong magnetic field. J. Eur. Ceram. Soc. 26, 559 (2006).CrossRefGoogle Scholar
15Kawakita, M.Uchikoshi, T.Kawakita, J. and Sakka, Y.: Preparation of crystalline-oriented titania photoelectrodes on ITO glasses from 2-propanol-2,4-pentanedione solvent by electrophoretic deposition in a strong magnetic field. J. Am. Ceram. Soc. (in press).Google Scholar
16Sugiyama, T.Tahashi, M.Sassa, K. and Asai, S.: The control of crystal orientation in non-magnetic metals by imposition of a high magnetic field. ISIJ Int. 43, 855 (2003).CrossRefGoogle Scholar
17Hagfeldtt, A. and Grätzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).CrossRefGoogle Scholar
18Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).CrossRefGoogle Scholar
19Kitano, M.Matsuoka, M.Ueshima, M. and Anpo, M.: Recent developments in titanium oxide-based photocatalysts. Appl. Catal., A 325, 1 (2007).CrossRefGoogle Scholar