Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T00:26:45.547Z Has data issue: false hasContentIssue false

Oxygen semi-permeation properties of La1−xSrxFeO3−δ perovskite membranes under high oxygen gradient

Published online by Cambridge University Press:  28 August 2020

Eva Deronzier*
Affiliation:
IRCER, CNRS, Université de Limoges, CEC, 12 Rue Atlantis, 87068Limoges, France
Thierry Chartier
Affiliation:
IRCER, CNRS, Université de Limoges, CEC, 12 Rue Atlantis, 87068Limoges, France
Pierre-Marie Geffroy
Affiliation:
IRCER, CNRS, Université de Limoges, CEC, 12 Rue Atlantis, 87068Limoges, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This work is focused on the evaluation of oxygen semi-permeation and electrochemical performances under high oxygen gradient of free cobalt perovskite membrane materials; La1−xSrxFeO3−δ perovskite. For a better understanding of oxygen transport through La1−xSrxFeO3−δ perovskite membranes, the oxygen diffusion, oxygen incorporation, and desorption coefficients were determined under high oxygen gradient in relation to the temperature for La1−xSrxFeO3−δ (with x = 0.1, 0.3, 0.5, and 0.7) by a specific method based on oxygen semi-permeation. The best electrochemical performances were obtained for La0.3Sr0.7FeO3−δ (LSF37) and La0.5Sr0.5FeO3−δ (LSF55) perovskite membranes with oxygen fluxes of 1.7 × 10−3 and 1.2 × 10−3 mol/m2 s at 900 °C, respectively. The oxygen incorporation and desorption coefficients of LSF55 were two times lower than those of LSF37 and similar to those of La0.5Sr0.5Fe0.7Ga0.3O3−δ. The values of these coefficients are discussed and compared with the data reported in the literature by isotopic exchange for the similar material compositions.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouwmeester, H.J.M. and Burggraaf, A.: Dense ceramic membranes for oxygen separation. CRC Handb. Solid State Electrochem., 481 (1997).Google Scholar
Takahashi, T., Esaka, T., and Iwahara, H.: Electrical conduction in the sintered oxides of the system Bi2O3-BaO. J. Solid State Chem. 16, 317 (1976).CrossRefGoogle Scholar
Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., Lin, Y.S., and Diniz da Costa, J.C.: Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13 (2008).CrossRefGoogle Scholar
Geffroy, P-M., Blond, E., Richet, N., and Chartier, T.: Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chem. Eng. Sci. 162, 245 (2017).CrossRefGoogle Scholar
Arnold, M., Wang, H., and Feldhoff, A.: Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J. Membr. Sci. 293, 44 (2007).CrossRefGoogle Scholar
Buysse, C., Kovalevsky, A., Snijkers, F., Buekenhoudt, A., Mullens, S., Luyten, J., Kretzschmar, J., and Lenaerts, S.: Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. J. Membr. Sci. 372, 239 (2011).CrossRefGoogle Scholar
Klande, T., Ravkina, O., and Feldhoff, A.: Effect of microstructure on oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and SrCo0.8Fe0.2O3−δ membranes. J. Eur. Ceram. Soc. 33, 1129 (2013).CrossRefGoogle Scholar
Berenov, A., Atkinson, A., Kilner, J., Ananyev, M., Eremin, V., Porotnikova, N., Farlenkov, A., Kurumchin, E., Bouwmeester, H.J.M., Bucher, E., and Sitte, W.: Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ion. 268, 102 (2014).CrossRefGoogle Scholar
Teraoka, Y., Zhang, H-M., Furukawa, S., and Yamazoe, N.: Oxygen permeation through perovskite-type oxides. Chem. Lett. 11, 1743 (1985).CrossRefGoogle Scholar
Katsuki, M., Wang, S., Dokiya, M., and Hashimoto, T.: High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant. Solid State Ion. 156, 453 (2003).CrossRefGoogle Scholar
Li, T., Kamhangdatepon, T., Wang, B., Hartley, U.W., and Li, K.: New bio-inspired design for high-performance and highly robust La0.6Sr0.4Co0.2Fe0.8O3-δ membranes for oxygen permeation. J. Membr. Sci. 578, 203 (2019).CrossRefGoogle Scholar
Gao, J., Lun, Y., Han, N., Tan, X., Fan, C., and Liu, S.: Influence of nitric oxide on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite membranes. Sep. Purif. Technol. 210, 900 (2019).CrossRefGoogle Scholar
Jiang, S.P.: Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review. Int. J. Hydrog. Energy 44, 7448 (2019).CrossRefGoogle Scholar
Chanda, A., Huang, B.X., Malzbender, J., and Steinbrech, R.W.: Micro- and macro-indentation behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite. J. Eur. Ceram. Soc. 31, 401 (2011).CrossRefGoogle Scholar
Lipińska-Chwałek, M., Schulze-Küppers, F., and Malzbender, J.: Strength and elastic modulus of lanthanum strontium cobalt ferrite membrane materials. Ceram. Int. 41, 1355 (2015).CrossRefGoogle Scholar
Bucher, E. and Sitte, W.: Defect chemical analysis of the electronic conductivity of strontium-substituted lanthanum ferrite. Solid State Ion. 173, 23 (2004).CrossRefGoogle Scholar
Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., and Poeppelmeier, K.R.: Electron/hole and ion transport in La1−xSrxFeO3−δ. J. Solid State Chem. 172, 219 (2003).CrossRefGoogle Scholar
Tsipis, E.V., Patrakeev, M.V., Kharton, V.V., Yaremchenko, A.A., Mather, G.C., Shaula, A.L., Leonidov, I.A., Kozhevnikov, V.L., and Frade, J.R.: Transport properties and thermal expansion of Ti-substituted La1−xSrxFeO3−δ (x=0.5–0.7). Solid State Sci. 7, 355 (2005).CrossRefGoogle Scholar
Søgaard, M., Vang Hendriksen, P., and Mogensen, M.: Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite. J. Solid State Chem. 180, 1489 (2007).CrossRefGoogle Scholar
Kharton, V.V., Waerenborgh, J.C., Viskup, A.P., Yakovlev, S.O., Patrakeev, M.V., Gaczyński, P., Marozau, I.P., Yaremchenko, A.A., Shaula, A.L., and Samakhval, V.V.: Mixed conductivity and Mössbauer spectra of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0–0.05, y=0–0.30). J. Solid State Chem. 179, 1273 (2006).CrossRefGoogle Scholar
, M.F., Tsipis, E.V., Waerenborgh, J.C., Yaremchenko, A.A., Kolotygin, V.A., Bredikhin, S., and Kharton, V.V.: Thermomechanical, transport and anodic properties of perovskite-type (La0.75Sr0.25)0.95Cr1−xFexO3−δ. J. Power Sources 206, 59 (2012).CrossRefGoogle Scholar
Geffroy, P.M., Reichmann, M., Kilmann, L., Jouin, J., Richet, N., and Chartier, T.: Identification of the rate-determining step in oxygen transport through La1−xSrxFe1−yGayO3−δ perovskite membranes. J. Membr. Sci. 476, 340 (2015).CrossRefGoogle Scholar
Kharton, V.V., Shaulo, A.L., Viskup, A.P., Avdeev, M., Yaremchenko, A.A., Patrakeev, M.V., Kurbakov, A.I., Naumovich, E.N., and Marques, F.M.B.: Perovskite-like system (Sr,La)(Fe,Ga)O3−δ: Structure and ionic transport under oxidizing conditions. Solid State Ion. 150, 229 (2002).CrossRefGoogle Scholar
Gurauskis, J., Lohne, Ø.F., Lagergren, D.S., Wefring, E.T., and Wiik, K.: Oxygen permeation in symmetric and asymmetric La0.2Sr0.8Fe0.8Ta0.2O3−δ membranes. J. Eur. Ceram. Soc. 36, 1427 (2016).CrossRefGoogle Scholar
Park, J.H., Kim, K.Y., and Park, S.D.: Oxygen permeation and stability of La0.6Sr0.4TixFe1−xO3−δ (x = 0.2 and 0.3) membrane. Desalination 245, 559 (2009).CrossRefGoogle Scholar
Kayaalp, B., Lee, S., Klauke, K., Seo, J., Nodari, L., Kornowski, A., Jung, W., and Mascotto, S.: Template-free mesoporous La0.3Sr0.7Ti1-xFexO3±δ for CH4 and CO oxidation catalysis. Appl. Catal. B Environ. 245, 536 (2019).CrossRefGoogle Scholar
ten Elshof, J.E., Bouwmeester, H.J.M., and Verweij, H.: Oxygen transport through La1−xSrxFeO3−δ membranes. I. Permeation in air/He gradients. Solid State Ion. 81, 97 (1995).CrossRefGoogle Scholar
ten Elshof, J.E., Bouwmeester, H.J.M., and Verweij, H.: Oxygen transport through La1−xSrxFeO3−δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ion. 89, 81 (1996).CrossRefGoogle Scholar
Diethelm, S., Van herle, J., Sfeir, J., and Buffat, P.: Correlation between oxygen transport properties and microstructure in La0.5Sr0.5FeO3−δ. J. Eur. Ceram. Soc. 25, 2191 (2005).CrossRefGoogle Scholar
Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., and Fueki, K.: Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179 (1988).CrossRefGoogle Scholar
Dann, S.E., Currie, D.B., Weller, M.T., Thomas, M.F., and Al-Rawwas, A.D.: The effect of oxygen stoichiometry on phase relations and structure in the system La1-xSrxFeO3-δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 109, 134 (1994).CrossRefGoogle Scholar
Baumann, S., Schulze-Küppers, F., Roitsch, S., Betz, M., Zwick, M., Pfaff, E.M., Meulenberg, W.A., Mayer, J., and Stöver, D.: Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. J. Membr. Sci. 359, 102 (2010).CrossRefGoogle Scholar
Guironnet, L.: Compréhension de l'influence Des Paramètres Micro et Nano Structuraux Sur Les Performances Électrochimiques de Conducteurs Mixtes. Thèse de doctorat, Limoges, 2017.Google Scholar
Guironnet, L., Geffroy, P-M., Tessier-Doyen, N., Boulle, A., Richet, N., and Chartier, T.: The surface roughness effect on electrochemical properties of La0.5Sr0.5Fe0.7Ga0.3O3-δ perovskite for oxygen transport membranes. J. Membr. Sci. 588, 117199 (2019).CrossRefGoogle Scholar
Reichmann, M., Geffroy, P-M., Fouletier, J., Richet, N., and Chartier, T.: Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3−δ and La0.5A0.5Fe0.7Co0.3O3−δ dense perovskite membranes with A = Ca, Sr and Ba (Part I). J. Power Sources 261, 175 (2014).CrossRefGoogle Scholar
De Souza, R.A.: A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890 (2006).CrossRefGoogle ScholarPubMed
van Doorn, R.E., Fullarton, I.C., de Souza, R.A., Kilner, J.A., Bouwmeester, H.J.M., and Burggraaf, A.J.: Surface oxygen exchange of La0.3Sr0.7CoO3−δ. Solid State Ion. 96, 1 (1997).CrossRefGoogle Scholar
De Souza, R.A., Kilner, J.A., and Walker, J.F.: A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ. Mater. Lett. 43, 43 (2000).CrossRefGoogle Scholar
Guironnet, L., Geffroy, P-M., Jouay, F., Pagnoux, C., Richet, N., and Chartier, T.: La0.6Sr0.4Fe0.8Co0.2O3-δ electrophoretic coating for oxygen transport membranes. Chem. Eng. Sci. X 1, 100008 (2019).Google Scholar
Fouletier, J., Fabry, P., and Kleitz, M.: Electrochemical semipermeability and the electrode microsystem in solid oxide electrolyte cells. J. Electrochem. Soc. 123, 204 (1976).CrossRefGoogle Scholar
Fouletier, J., Seinera, H., and Kleitz, M.: Measurement and regulation of oxygen content in selected gases using solid electrolyte cells. II. Differential gauge. J. Appl. Electrochem. 5, 177 (1975).CrossRefGoogle Scholar
Fouletier, J., Mantel, E., and Kleitz, M.: Performance characteristics of conventional oxygen gauges. Solid State Ion. 6, 1 (1982).CrossRefGoogle Scholar
Supplementary material: File

Deronzier et al. Supplementary Materials

Deronzier et al. Supplementary Materials 1

Download Deronzier et al. Supplementary Materials(File)
File 13.7 KB
Supplementary material: File

Deronzier et al. Supplementary Materials

Deronzier et al. Supplementary Materials 2

Download Deronzier et al. Supplementary Materials(File)
File 13.5 KB
Supplementary material: File

Deronzier et al. Supplementary Materials

Deronzier et al. Supplementary Materials 3

Download Deronzier et al. Supplementary Materials(File)
File 13 KB