Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T03:02:53.310Z Has data issue: false hasContentIssue false

Osteogenic differentiation of mesenchymal stem cells on hybrid coatings sterilized by different processes

Published online by Cambridge University Press:  14 October 2019

Estela K. Kerstner Baldin*
Affiliation:
LAPEC—Research Laboratory Corrosion, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
Célia de Fraga Malfatti
Affiliation:
LAPEC—Research Laboratory Corrosion, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 91501-970, Brazil
Rosmary Nichele Brandalise
Affiliation:
PGPROTEC—Postgraduate Program in Process and Technology Engineering, University of Caxias do Sul (UCS), Caxias do Sul, RS 95070-560, Brazil
Bruno Meira Soares
Affiliation:
LACOM—Laboratory of Analysis of Organic Compounds and Metals, Federal University of Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
Daniela Pavulack
Affiliation:
IPCT—Institute for Research on Stem Cells, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
Daniela Steffens
Affiliation:
Postgraduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS 90050-170, Brazil
Patricia Pranke
Affiliation:
Hematology and Stem Cell Laboratory, Faculty of Pharmacy, and Post Graduate Program in Physiology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The objective of the present work was to evaluate the behavior of osteogenesis of mesenchymal stem cells (MSCs) on a double-layer, protective, and bioactive hybrid coating sterilized by 3 different processes: steam autoclave, hydrogen peroxide plasma, and ethylene oxide. The hybrid coating was obtained from a sol consisting of the silane precursors tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES), applied on a Ti6Al4V substrate. To promote bioactivity, hydroxyapatite (HA) particles were dispersed in a second coating (bioactive layer: TEOS/MTES + HA) applied on the first (TEOS/MTES). The sterilized coatings were evaluated by scanning electron microscopy, wettability, and micrometer roughness. The behavior of hydrolytic degradation was evaluated by the mass variation of the samples and the release of silicon by the technique of high-resolution atomic absorption spectrometry. All coatings presented morphological and superficial alterations after sterilization. Sterilization by ethylene oxide and hydrogen peroxide plasma intensified the hydrolytic degradation of the bioactive coating causing a greater release of silicon. The sterilized hybrid coatings did not show cytotoxicity to MSCs. Adhesion, viability, and osteogenic differentiation were favored on the sterilized coating of hydrogen peroxide plasma, which is opposite to what was observed for the ethylene oxide-sterilized coating.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goonoo, N. and Luximon, A.B.: Regenerative medicine: Induced pluripotent stem cells and their benefits on accelerated bone tissue reconstruction using scaffolds. J. Mater. Res. 33, 1573 (2018).CrossRefGoogle Scholar
Liao, S., Chan, C.K., and Ramakrishna, S.: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. Eng., C 28, 1189 (2008).CrossRefGoogle Scholar
Park, H., Karajanagi, S., Wolak, K., Aanestad, J., Daheron, L., Kobler, J.B., Guerra, G.L., Heaton, J.Y., Langer, R.S., and Zeitels, S.M.: Three-dimensional hydrogel model using adipose-derived stem cells for vocal fold augmentation. Tissue Eng., Part A 16, 535 (2009).CrossRefGoogle Scholar
Boudriot, U., Bernhard, G., Roland, D., Andreas, G., and Joachim, W.H.: Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol. Symp. 225, 9 (2005).CrossRefGoogle Scholar
Wang, P.Y., Thissen, H., and Kingshott, P.: Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater. 45, 31 (2016).CrossRefGoogle ScholarPubMed
Preston, S.L., Alison, M.R., Forbes, S.J., Direkze, N.C., Poulsom, R., and Wright, N.A.: The new stem cell biology: Something for everyone. Mol. Pathol. 56, 86 (2003).CrossRefGoogle ScholarPubMed
Miao, Z., Jin, J., Zhun, J., Huang, W., Qian, H., and Zhang, X.: Isolation of mesenchymal stem cells from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 30, 681 (2006).CrossRefGoogle ScholarPubMed
Bernardi, L., Luisi, S.B., Fernandes, R., Dalberto, T.P., Valentim, L., Bogo Chies, J.A., Fossati, A.C.M., and Pranke, P.: The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J. Endod. 37, 963 (2011).CrossRefGoogle ScholarPubMed
Romanov, Y.A., Svintsitskaya, V.A., and Smirnov, V.N.: Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells 21, 105 (2003).CrossRefGoogle ScholarPubMed
Caplan, A.I.: Mesenchymal stem cells. J. Orthop. Res. 9, 641 (1991).CrossRefGoogle ScholarPubMed
Dimitrievska, S., Bureau, M.N., Antoniou, J., Mwale, M., Petit, A., Lima, R.S., and Marple, B.R.: Titania-hydroxyapatite nanocomposite coatings support human mesenchymal stem cells osteogenic differentiation. J. Biomed. Mater. Res., Part A 98, 576 (2011).CrossRefGoogle ScholarPubMed
Sanaei-Rad, P., Kashi, T.S.J., Seyedjafari, E., and Soleimani, M.: Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds. Biologicals 44, 511 (2016).CrossRefGoogle ScholarPubMed
Young, A.T., Kang, J.H., Venkatesan, J., Chang, H.K., Bhatnagar, I., Chang, K.Y., Salameh, Z., Kim, S.K., and Kim, D.G.: Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int. J. Biol. Macromol. 93, 1488 (2016).CrossRefGoogle Scholar
Owens, G.J., Singh, R.K., Foroutan, F., Alqaysi, M., Han, C.M., Mahapatra, C., Kim, H.W., and Knowles, J.C.: Sol–gel-based materials for biomedical applications. Prog. Mater. Sci. 77, 1 (2016).CrossRefGoogle Scholar
Ballarre, J., Seltzer, R., Mendoza, E., Orellano, J.C., Mai, Y.W., García, C., and Ceré, S.M.: Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. Mater. Sci. Eng., C 31, 545 (2011).CrossRefGoogle Scholar
Rodríguez-Cano, A., Cintas, P., Fernández-Calderón, M.C., Pacha-Olivenza, M.A., Crespo, L., González-Martín, M.L., and Babiano, R.: Controlled silanization–amination reactions on the Ti6Al4V surface for biomedical applications. Colloids Surf., B 106, 248 (2013).CrossRefGoogle ScholarPubMed
Zomorodian, A., Brusciotti, F., Fernandes, A., Carmezim, M.J., Silva, T.M., Fernandes, J.C.S., and Montenor, M.F.: Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf. Coat. Technol. 206, 4368 (2012).CrossRefGoogle Scholar
Liu, J., Zhan, Z., Yu, M., and Li, S.: Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti–6.5Al–1Mo–1V–2Zr. Appl. Surf. Sci. 264, 507 (2013).CrossRefGoogle Scholar
Martínez-Ibáñez, M., Juan-Díaz, M.J., Lara-Saez, I., Coso, A., Franco, J., Gurruchaga, M., Suay, J., and Goñi, I.: Biological characterization of a new silicon-based coating developed for dental implants. J. Mater. Sci.: Mater. Med. 27, 80 (2016).Google ScholarPubMed
Park, J.H., Navarrete, R.O., Baier, R.E., Meyer, A.E., Tannenbaum, R., Boyan, B.D., and Schwartz, Z.: Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater. 8, 1966 (2012).CrossRefGoogle ScholarPubMed
Galante, R., Ghisleni, D., Paradiso, P., Alves, V.D., Pinto, T.H.A., Colaço, R., and Serro, A.P.: Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Mater. Sci. Eng., C 78, 389 (2017).CrossRefGoogle ScholarPubMed
Costa, D.M., Lopes, L.K.O., Tipple, A.F.V., Castillo, R.B., Hu, H., Deva, A.K., and Vickery, K.: Effect of hand hygiene and glove use on cleanliness reusable surgical instruments. J. Hosp. Infect. 97, 27 (2017).CrossRefGoogle ScholarPubMed
Shi, X., Xu, L., Violin, K.B., and Lu, S.: Improved osseointegration of long-term stored SLA implant by hydrothermal sterilization. J. Mech. Behav. Biomed. Mater. 53, 312 (2016).CrossRefGoogle ScholarPubMed
Antonini, L.M., Malfatti, C.F., Reilly, G.C., Owen, R., and Takimi, A.S.: Effect of sterilization on nanostructure Ti6Al4V surfaces obtained by electropolishing. J. Mater. Res. 34, 1439 (2019).CrossRefGoogle Scholar
Heise, S., Wirth, T., Hohlinger, M., Hernandez, Y.T., Ortiz, J.A.R., Wagener, V., Virtanen, S., and Boccaccini, A.R.: Electrophoretic deposition of chitosan/bioactive glass/silica coatings on stainless steel and WE43 Mg alloy substrates. Surf. Coat. Technol. 344, 553 (2018).CrossRefGoogle Scholar
Baldin, E.K.K., Garcia, C., Henriques, J.A.P., Ely, M.R., Birriel, E.J., Brandalise, R.N., and Malfatti, C.F.: Effect of sterilization processes on the properties of a silane hybrid coating applied to Ti6Al4V alloy. J. Mater. Res. 33, 161 (2017).CrossRefGoogle Scholar
Baldin, E.K.K., Malfatti, C.F., Rodói, V., and Brandalise, R.N.: Effect of sterilization on the properties of a bioactive hybrid coating containing hydroxyapatite. Adv. Mater. Sci. Eng., 1 (2019).CrossRefGoogle Scholar
Wang, M., Chen, Y., Wang, Y., and Gu, H.: Improving endothelialization on 316L stainless steel through wettability controllable coating by sol–gel technology. Appl. Surf. Sci. 268, 73 (2013).CrossRefGoogle Scholar
Wittenburg, G., Lauer, G., Oswald, S., Labudde, D., and Franz, C.M.: Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading. J. Biomed. Mater. Res., Part A 102, 2755 (2014).CrossRefGoogle ScholarPubMed
Han, A., Tsoi, J.K.H., Matinlinna, J.P., Zhang, Y., and Chen, Z.: Effects of different sterilization methods on surface characteristics and biofilm formation on zirconia in vitro. Dent. Mater. 109, 272 (2018).CrossRefGoogle Scholar
Romero-Gavilan, F., Silva, S.B., Cañads, J.G., Palla, B., Izquierdo, R., Gurruchaga, M., Goñi, I., and Suay, J.: Control of the degradation of silica sol–gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J. Non-Cryst. Solids 453, 66 (2016).CrossRefGoogle Scholar
Zhai, W., Lu, H., Wu, C., Chen, L., Lin, X., Naoki, K., Chen, G., and Chang, J.: Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9, 8004 (2013).CrossRefGoogle ScholarPubMed
Juan-Díaz, M.J., Ibánez, M.M., Sáez, I.L., Izquierdo, R., Gurruchaga, M., Goñi, I., and Suay, J.: Development of hybrid sol–gel coatings for the improvement of metallic biomaterials performance. Prog. Org. Coat. 96, 42 (2016).CrossRefGoogle Scholar
Huang, Q., Elklooly, T.A., Liu, Z., Zhang, R., Yang, X., Shen, Z., and Feng, Q.: Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids Surf., B 145, 37 (2016).CrossRefGoogle ScholarPubMed
Hirano, M., Kozuka, K., Asano, Y., Kakuchi, Y., Arai, H., and Ohtsu, N.: Effect of sterilization and water rinsing on cell adhesion to titanium surfaces. Appl. Surf. Sci. 311, 498 (2014).CrossRefGoogle Scholar
Junkar, I., Kulkarni, M., Drasler, B., Rugelj, N., Mazare, A., Flasker, A., Drobne, D., Humpolicek, P., Resnik, M., Schmuki, P., Mozetic, M., and Iglic, A.: Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry 109, 79 (2016).CrossRefGoogle ScholarPubMed
Likibi, F., Jiang, B., and Li, B.: Biomimetic nanocoating promotes osteoblast cell adhesion on biomedical implants. J. Mater. Res. 23, 3222 (2008).CrossRefGoogle Scholar
Qian, Z., Ross, D., Jia, W., Xing, Q., and Zhao, F.: Bioactive polydimethylsiloxane for optimal human mesenchymal stem cell sheet culture. Bioact. Mater. 3, 167 (2018).CrossRefGoogle ScholarPubMed
Jaidev, L.R. and Chatterrjee, K.: Surface functionalization od 3D printed polymer scaffolds to augment stem cell response. Mater. Des. 161, 44 (2018).CrossRefGoogle Scholar
Chen, C.W., Ko, C.L., Kuo, H.N., Lin, D.J., Wu, H.Y., Yang, L., Lou, C.W., and Lin, J.H.: Mineralization of progenitor cells with different implant topographies. Procedia Eng. 36, 173 (2012).CrossRefGoogle Scholar
Matuska, A.M. and Mcfetridge, P.S.: The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion: Sterilization method modulates cell adhesion. J. Biomed. Mater. Res., Part B 103, 397 (2015).CrossRefGoogle Scholar
Rogina, A., Antunovic, M., Pribolsan, L., Mihalic, K.C., Vukasovic, A., Ivkovic, A., Marijanovic, I., Ferrer, G.G., Ivankovic, M., and Ivankovic, H.: Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers 9, 397 (2017).CrossRefGoogle ScholarPubMed
Chen, W.C. and KO, C.L.: Roughened titanium surfaces with silane and further RGD peptide modification in vitro. Mater. Sci. Eng., C 33, 2713 (2013).CrossRefGoogle ScholarPubMed
Curran, J., Chen, R., and John, A.H.: The guidance of human mesenchymal stem cell differentiation in by controlled modification to the cell substrate. Biomaterials 27, 4783 (2006).CrossRefGoogle Scholar
Phillips, J.E., Petrie, T.A., Creighton, F.P., and Garcia, A.J.: Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomater. 6, 12 (2010).CrossRefGoogle ScholarPubMed
Kenry, W., Lee, W.C., Loh, K.P., and Lim, C.T.: When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials 155, 236 (2018).CrossRefGoogle ScholarPubMed
Shie, M.Y., Ding, S.J., and Chang, H.C.: The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 7, 2604 (2011).CrossRefGoogle ScholarPubMed
Maeno, S., Niki, Y., Matsumoto, H., Morioka, H., Yatabe, T., Funayama, A., Toyama, Y., Taguchi, T., and Tanaka, J.: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26, 23 (2005).CrossRefGoogle ScholarPubMed
Ballarre, J., Manjubala, I., Schreiner, W.H., Orellano, J.C., Fratzl, P., and Ceré, S.: Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless-steel implants. Acta Biomater. 6, 1601 (2010).CrossRefGoogle ScholarPubMed
Ballarre, J., López, D.A., Schreiner, W.H., Durán, A., and Ceré, S.M.: Protective hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel: Surface characterization. Appl. Surf. Sci. 253, 7260 (2007).CrossRefGoogle Scholar
Omar, S., Repp, F., Desimone, P.M., Weinkamer, R., Wagermaier, W., Cere, S., and Ballarre, J.: Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless-steel implants: Electrochemical, bioactive and in vivo response. J. Non-Cryst. Solids 425, 1 (2015).CrossRefGoogle Scholar
Meirelles, L., Chagastelles, P.C., and Nardi, N.B.: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204 (2006).CrossRefGoogle Scholar