Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T23:01:22.795Z Has data issue: false hasContentIssue false

Origin of the ϕ ∼ ±9° peaks in YBa2Cu3O7−δ films grown on cubic zirconia substrates

Published online by Cambridge University Press:  31 January 2011

D. G. Schlom
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802–5005
E. S. Hellman
Affiliation:
AT/T Bell Laboratories, Murray Hill, New Jersey 07974–0636
E.H. Hartford Jr.
Affiliation:
AT/T Bell Laboratories, Murray Hill, New Jersey 07974–0636
C.B. Eom
Affiliation:
AT/T Bell Laboratories, Murray Hill, New Jersey 07974–0636
J. C. Clark
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802–5005
J. Mannhart
Affiliation:
IBM Research Division, Zurich Research Laboratory, CH-8803 Ruschlikon, Switzerland
Get access

Abstract

The c-axis oriented YBa2Cu3O7−δ films grown on (001) yttria-stabilized cubic zirconia (YSZ) substrates often contain domains whose in-plane alignment is rotated approximately 9° from the cube-on-cube epitaxial relationship, in addition to the more commonly observed 0° and 45° in-plane rotations. We have investigated the origin of this ∼9° orientation using in situ electron diffraction during growth and ex situ 4-circle x-ray diffraction. Our results indicate that the ∼9° orientation provides the most favorable lattice match between the interfacial (110)-oriented BaZrO3 epitaxial reaction layer, which forms between YBa2Cu3O7−δ and the YSZ substrate. If epitaxy occurs directly between YBa2Cu3O7−δ and the YSZ substrate, i.e., before the BaZrO3 epitaxial reaction layer is formed, the 0° and 45° domains have the most favorable lattice match. However, growth conditions that favor the formation of the BaZrO3 reaction layer prior to the nucleation of YBa2Cu3O7−δ lead to an increase in ∼9° domains. The observed phenomenon, which results from epitaxial alignment between the diagonal of a square surface net and the diagonal of a rectangular surface net, is a general method for producing in-plane misorientations, and has also been observed for the heteroepitaxial growth of other materials, including (Ba, K)BiO3/LaAlO3. The YBa2Cu3O7−δ/YSZ case involves epitaxial alignment between [111]BaZrO3 and [110]YSZ, resulting in an expected in-plane rotation of 11.3° to 9.7° for fully commensurate and for fully relaxed (110)BaZrO3 on (001)YSZ, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Moulson, A. J. and Herbert, J. M., Electroceramics: Materials • Properties • Applications (Chapman / Hall, London, 1990).Google Scholar
2.Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991);CrossRefGoogle Scholar
Char, K., Colclough, M. S., Lee, L. P., and Zaharchuk, G., Appl. Phys. Lett. 59, 2177 (1991).CrossRefGoogle Scholar
3.Wu, X. D., Luo, L., Muenchausen, R. E., Springer, K. N., and Foltyn, S., Appl. Phys. Lett. 60, 1381 (1992).CrossRefGoogle Scholar
4.Lee, L. P., Char, K., Colclough, M. S., and Zaharchuk, G., Appl. Phys. Lett. 59, 3051 (1991).CrossRefGoogle Scholar
5.Fork, D. K., Barrera, A., Geballe, T. H., Viano, A. M., and Fenner, D. B., Appl. Phys. Lett. 57, 2504 (1990).CrossRefGoogle Scholar
6.Garrison, S. M., Newman, N., Cole, B. F., Char, K., and Barton, R. W., Appl. Phys. Lett. 58, 2168 (1991);CrossRefGoogle Scholar
Garrison, S. M., Newman, N., Cole, B. F., Char, K., and Barton, R. W., Appl. Phys. Lett. 59, 3060 (1991).CrossRefGoogle Scholar
7.Fork, D. K., Garrison, S. M., Hawley, M., and Geballe, T. H., J. Mater. Res. 7, 1641 (1992).CrossRefGoogle Scholar
8.Wen, J. G., Traeholt, C., Zandbergen, H. W., Joosse, K., Reuvekamp, E.M.C.M., and Rogalla, H., Physica C 218, 29 (1993).CrossRefGoogle Scholar
9.Brorsson, G., Olsson, E., Ivanov, Z. G., Stepantsov, E. A., Alarco, J. A., Boikov, Y., Claeson, T., Berastegui, P., Langer, V., and Löfgren, M., J. Appl. Phys. 75, 7958 (1994).CrossRefGoogle Scholar
10.Boikov, Y., Ivanov, Z.G., Brorsson, G., and Claeson, T., Supercond. Sci. Technol. 7, 281 (1994).CrossRefGoogle Scholar
11.Skofronick, G. L., Carim, A. H., Foltyn, S. R., and Muen-chausen, R. E., J. Appl. Phys. 76, 4753 (1994).CrossRefGoogle Scholar
12.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
13.Laderman, S.S., Taber, R. C., Jacowitz, R. D., Moll, J. L., Eom, C. B., Hylton, T. L., Marshall, A.F., Geballe, T.H., and Beasley, M. R., Phys. Rev. B 43, 2922 (1991).CrossRefGoogle Scholar
14.Alarco, J. A., Brorsson, G., Ivanov, Z.G., Nilsson, P-A., Olsson, E., and Löfgren, M., Appl. Phys. Lett. 61, 723 (1992).CrossRefGoogle Scholar
15.Shannon, R. D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
16.Ingel, R. P. and Lewis, D. III, J. Am. Ceram. Soc. 69, 325 (1986).CrossRefGoogle Scholar
17. JCPDS card 6–399 (JCPDS International Centre for Diffraction Data, Swarthmore, PA).Google Scholar
18.Beyers, R. and Shaw, T. M., Solid State Phys. 42, 135 (1989), and references therein.CrossRefGoogle Scholar
19.Skofronick, G. L., Carim, A. H., Foltyn, S.R., and Muen-chausen, R. E., J. Mater. Res. 8, 2785 (1993).CrossRefGoogle Scholar
20.Mueller, C. H., Holloway, P.H., Budai, J. D., Miranda, F. A., and Bhasin, K.B., J. Mater. Res. 10, 810 (1995).CrossRefGoogle Scholar
21. The lattice mismatch values given throughout this article are calculated by the formula (a suba fiim/a film).22 Although the lattice constants vary with temperature and composition (0.095 ≤ x ≤ 0.6 in (Y203)x(Zr02)1−x and 0 ≤ δ ≤ 1 in YBa2Cu3O7−δ) and it would be most appropriate to report the lattice mismatch for the specific growth conditions used, for simplicity we report the lattice mismatch at room temperature, x ∼ 0.09516 and δ ∼ 0.18 These approximate values are adequate for the relatively qualitative reasoning that lattice mismatch considerations allow.Google Scholar
22. See, for example, Matthews, J.W. in Epitaxial Growth, Part B, edited by Matthews, J.W. (Academic Press, New York, 1975), pp. 559609.CrossRefGoogle Scholar
23.Schlom, D. G., Hellman, E. S., Hartford, E. H. Jr., and Mannhart, J., presented at the Fall '93 Materials Research Society Meeting in Boston, MA, 1993 (unpublished).Google Scholar
24.Cuomo, J. J., Chisholm, M. F., Yee, D.S., Mikalsen, D. J., Madakson, P.B., Roy, R.A., Giess, E., and Scilla, G. in Thin Film Processing and Characterization of High-Temperature Superconductors, AIP Conference Proceedings No. 165, edited by Harper, J. M. E., Colton, R.J., and Feldman, L.C. (American Institute of Physics, New York, 1988), pp. 141148.Google Scholar
25.Komatsu, T., Tanaka, O., Matusita, K., Takata, M., and Ya-mashita, T., Jpn. J. Appl. Phys. 27, L1025 (1988).CrossRefGoogle Scholar
26.Koinuma, H., Fukuda, K., Hashimoto, T., and Fueki, K., Jpn. J. Appl. Phys. 27, L1216 (1988).CrossRefGoogle Scholar
27.Cima, M. J., Schneider, J. S., Peterson, S. C., and Coblenz, W., Appl. Phys. Lett. 53, 710 (1988).CrossRefGoogle Scholar
28.Cheung, C. T. and Ruckenstein, E., J. Mater. Res. 4, 1 (1989).CrossRefGoogle Scholar
29.Tietz, L. A., Carter, C.B., Lathrop, D. K., Russek, S.E., Buhrman, R.A., and Michael, J.R., J. Mater. Res. 4, 1072 (1989). The 0.3 nm fringe spacing reported for the intermediate reaction layer in the cross-sectional TEM image (identified as being possibly BaZrO3) indicates that the BaZrO3 is (110)-oriented.CrossRefGoogle Scholar
30.Shapiro, M. J., More, K. L., Lackey, W. J., Hanigofsky, J.A., Hill, D.N., Carter, W. B., Barefield, E.K., Judson, E.A., O'Brien, D. F., Patrick, R., Chung, Y. S., and Moss, T. S., J. Am. Ceram. Soc. 74, 2021 (1991).CrossRefGoogle Scholar
31.Hwang, D. M., Ying, Q. Y., and Kwok, H. S., Appl. Phys. Lett. 58, 2429 (1991).CrossRefGoogle Scholar
32.Casanove, M. J., Alimoussa, A., Roucau, C., Escribe-Filippini, C., Reydet, P. L., and Marcus, P., Physica C 175, 285 (1991).CrossRefGoogle Scholar
33.Eibl, O., Hradil, K., and Schmidt, H., Physica C 177, 89 (1991).CrossRefGoogle Scholar
34.Alarco, J. A., Brorsson, G., Olin, H., and Olsson, E., J. Appl. Phys. 75, 3202 (1994).CrossRefGoogle Scholar
35. Ceres Corp., Billerica, N., Massachusetts.Google Scholar
36. Commercial Crystal Laboratories, Naples, Florida.Google Scholar
37.Xi, X. X., Linker, G., Meyer, O., Nold, E., Obst, B., Ratzel, F., Smithey, R., Strehlau, B., Weschenfelder, F., and Geerk, J., Z. Phys. B 74, 13 (1989).CrossRefGoogle Scholar
38.Holzapfel, B., Roas, B., Schultz, L., Bauer, P., and Saemann-Ischenko, G., Appl. Phys. Lett. 61, 3178 (1992).CrossRefGoogle Scholar
39.Hellman, E. S., Hartford, E.H., and Gyorgy, E. M., Appl. Phys. Lett. 58, 1335 (1991).CrossRefGoogle Scholar
40.Eom, C. B., Sun, J.Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T.H., and Laderman, S.S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar
41.Azároff, L. V.Elements of X-Ray Crystallography (McGraw-Hill, New York, 1968), pp. 360389.Google Scholar
42. With the oxygen plasma on, the sample was exposed to the barium beam for 40 s. RBS measurement of the resulting BaO film thickness deposited on a comounted MgO substrate (T sub, ∼ 660 °C) indicated an average BaO film thickness of 1.4 nm.Google Scholar
43. Note that depending on the surface termination of the (110) BaZrO3 layer, the oxygen sublattice of this latter orientation relationship ([110]YBa2Cu3O7−δ ‖ [001]BaZrO3) could have the same surface mesh area as the oxygen sublattice of the former orientation relationship ([100]YBa2Cu3O7−δ ‖ [001]BaZrO3). There are two distinct (110) BaZrO3 planes, neither of which is charge neutral: BaZrO and O2. If the latter is the terminating layer, the oxygen sublattice of the near-coincident site surface mesh cell shown in Fig. 8 is centered, and the primitive cell would have an area of 0.47 nm2.Google Scholar
44.Escribe-Filippini, C., Reydet, P.L., Marcus, J., and Burnel, M., J. Less-Comm. Met. 151, 263 (1989).CrossRefGoogle Scholar
45.Schneemeyer, L.F., Thomas, J. K., Siegrist, T., Batlogg, B., Rupp, L.W., Opila, R.L., Cava, R.J. and Murphy, D.W., Nature (London) 335, 421 (1988).CrossRefGoogle Scholar
46.Wignacourt, J. P., Swinnea, J. S., Steinfink, H., and Goodenough, J.B., Appl. Phys. Lett. 53, 1753 (1988).CrossRefGoogle Scholar
47.Norton, M. G., Hellman, E. S., Hartford, E. H. Jr., and Carter, C.B., Physica C 205, 347 (1993);CrossRefGoogle Scholar
Norton, M. G., Hellman, E.S., Hartford, E.H. Jr., and Carter, C.B., J. Cryst. Growth 113, 716 (1991).CrossRefGoogle Scholar
48.Landolt-Börstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 12a, edited by Hellwege, K-H. (Springer-Verlag, Berlin, 1978), p. 160. At room temperature LaAlO3 is rhombohedral (not simple cubic). However, the distortion from simple cubic is extremely small (α = 60.1°) vs. α = 60° for cubic). Furthermore, at the substrate temperature at which growth was initiated, T sub ∼ 550 °C, LaAlO3 is cubic.Google Scholar
49.Gadalla, A. M. M. and White, J., Trans. Brit. Ceram. Soc. 65, 383 (1966).Google Scholar
50.Stubican, V. S., Hink, R.C., and Ray, S.P., J. Am. Ceram. Soc. 61, 17 (1978);CrossRefGoogle Scholar
Stubican, V. S. and Hellmann, J.R., in Science and Technology of Zirconia, Vol. 3 in Advances in Ceramics series, edited by Heuer, A. H. and Hobbs, L. W. (American Ceramic Society, Westerville, OH, 1981), pp. 2536.Google Scholar
51.Holzschuh, H. and Suhr, H., Appl. Phys. Lett. 59, 470 (1991).CrossRefGoogle Scholar
52.Fork, D. K. (private communication). These (110) BaZrO3 films were deposited on (001) YSZ on (001) Si. They were much thicker than the ∼0.3 nm BaZrO3 buffer layers studied in Ref. 7. Interestingly, a ϕ-scan of these (110)-oriented BaZrO3 films on (001) YSZ revealed two in-plane orientation variants rotated with respect to one another by 9.5°!Google Scholar