Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T03:22:00.405Z Has data issue: false hasContentIssue false

Ordering and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics

Published online by Cambridge University Press:  31 January 2011

In-Tae Kim
Affiliation:
Ceramics Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea
Yoon-Ho Kim
Affiliation:
Ceramics Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea
Su Jin Chung
Affiliation:
Department of Inorganic Materials Engineering, Seoul National University, Seoul 151-742, Korea
Get access

Abstract

Ordering and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 have been investigated using x-ray diffraction, transmission electron microscopy, energy-dispersive spectroscopy, and a network analyzer. Samples sintered at 1400 °C for 2 h were disordered and showed the presence of Nb-rich liquid phase at grain boundary junctions. Degree of ordering increased with following annealing at 1300 °C. Growth of the ordered region during the annealing process was discussed in terms of nucleation and growth. A long-range order parameter was calculated using structure factor. Measurements of microwave dielectric properties showed that permittivity and temperature coefficient of resonant frequency decreased with ordering, and quality factor increased with ordering. The correlation between microwave dielectric properties and ordering was discussed in terms of covalency of bonding, inhomogeneous charge distribution, and defects concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66 (6), 421 (1983).CrossRefGoogle Scholar
2.Kawashima, S., Nishida, M., Ueda, I., Ouchi, H., and Hayakawa, S., Proc. Ferroelectr. Mater. Appl. 1, 293 (1977).Google Scholar
3.Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 21, L624 (1982).CrossRefGoogle Scholar
4.Banno, H., Mizuno, F., Takeuchi, T., Tsunooka, T., and Ohya, K., Jpn. J. Appl. Phys. 24, 87 (1985).CrossRefGoogle Scholar
5.Sagala, D. A. and Nambu, S., J. Am. Ceram. Soc. 75 (9), 2573 (1992).CrossRefGoogle Scholar
6.Galasso, F. S. and Pyle, J., Inorg. Chem. 2 (3), 482 (1963).CrossRefGoogle Scholar
7.Galasso, F. S. and Pyle, J., J. Phys. Chem. 67, 1561 (1963).CrossRefGoogle Scholar
8.Galasso, F., Katz, L., and Ward, R., J. Am. Chem. Soc. 20 (2), 820 (1959).CrossRefGoogle Scholar
9.Hong, K. S., Kim, I. T., and Kim, C. D., unpublished results.Google Scholar
10.Kim, I. T., Hong, K. S., and Yoon, S. J., J. Mater. Sci. 30, 514 (1995).CrossRefGoogle Scholar
11.Setter, N. and Cross, L. E., J. Mater. Sci. 15, 2478 (1980).CrossRefGoogle Scholar
12.Stanger, C. G. F., Scholten, F. L., and Burggraaf, A. J., Solid State Commun. 32, 989 (1979).CrossRefGoogle Scholar
13.Klug, H. P. and Alexander, I. F., X-ray Diffraction Procedures, 2nd ed. (Wiley, New York, 1974), p. 464.Google Scholar
14.Hakki, B. W. and Coleman, P. D., IRE Trans. MTT 8 (7), 402 (1960).CrossRefGoogle Scholar
15.Tarou, M., Electronic Ceramics 24 (9), 38 (1993).Google Scholar
16.Kim, I. T., Ph.D. Thesis (1995).Google Scholar
17.Hirsch, P. B., Howie, A., Nicholson, R. B., and Pashley, D. W., Electron Microscopy of Thin Crystals (Plenum Publishing Co., London, 1965), p. 169.Google Scholar
18.Konishi, Y., Proc. IEEE 79 (6), 725 (1991).CrossRefGoogle Scholar
19.Simmons, R. O. and Balluffi, R. W., Phys. Rev. 117 (1), 52 (1960).CrossRefGoogle Scholar
20. Matsumoto, Hiuga, T., Takada, K., and Ichimura, H., Proc. 6th IEEE Symp. Appl. Ferroelectrics, 118 (1986).Google Scholar
21.Jacobsen, J., Collins, B. M., and Fender, B. E. F., Acta Crystallogr. B32, 1083 (1976).CrossRefGoogle Scholar
22.Moulson, A. J. and Herbert, J. M., Electroceramics (Chapman and Hall, London, 1990), p. 237.Google Scholar
23.Collar, E. L., Reaney, I. M., and Setter, N., Ferroelectrics 154, 35 (1994).CrossRefGoogle Scholar
24.Wakino, K. and Tamura, H., Ceramic Trans. 8, 305 (1990).Google Scholar