Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T07:51:46.106Z Has data issue: false hasContentIssue false

Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio

Published online by Cambridge University Press:  12 June 2018

Yu-Jia Yang
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People’s Republic of China; and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
Bin Zhang*
Affiliation:
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People’s Republic of China; and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
Hong-Yuan Wan
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Guang-Ping Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Nacre-mimetic (PE/TiO2)4 nanolayered composites (NLCs) with the nanocrystalline TiO2 layer thickness less than 30 nm and different thickness ratios of inorganic/organic layers were successfully prepared by using layer-by-layer self-assembly and chemical bath deposition method. Mechanical properties, especially fatigue properties of the NLCs with different thickness ratios were evaluated. The elastic modulus, hardness and fracture toughness, strain amplitude to fatigue limits of the NLCs reached 27.78 ± 5.69 GPa, 1.33 ± 0.31 GPa, and 4.16 ± 0.20 MPa m1/2, respectively. Fatigue performance of the NLCs in the high and low cycle fatigue regimes was optimized by tailoring the thickness ratio of the TiO2/PE layers. The PE/TiO2 NLCs with the larger thickness ratio of ∼3 has the high fatigue limit (the critical strain amplitude of 0.0853%) in the high-cycle fatigue regime, while that with the smaller thickness ratio of ∼1 and ∼0.5 are of the good fatigue strength in the low-cycle fatigue regime. The basic mechanism for the enhanced fatigue performance is elucidated.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, X.D. and Nardi, P.: Micro/nanomechanical characterization of a natural nanocomposite material—The shell of Pectinidae. Nanotechnology 15, 211 (2004).CrossRefGoogle Scholar
Currey, J.D.: Mechanical-properties of mother of pearl in tension. Proc. R. Soc., Ser. B 196, 443 (1977).Google Scholar
Espinosa, H.D., Rim, J.E., and Barthelat, F.: Merger of structure and material in nacre and bone—Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059 (2009).CrossRefGoogle Scholar
Song, F., Soh, A.K., and Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623 (2003).CrossRefGoogle ScholarPubMed
Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2011).CrossRefGoogle Scholar
Li, H., Yue, Y., Han, X., and Li, X.: Plastic deformation enabled energy dissipation in a bionanowire structured armor. Nano Lett. 14, 2578 (2014).CrossRefGoogle Scholar
Huang, Z., Li, H., Pan, Z., Wei, Q., Chao, Y.J., and Li, X.: Uncovering high-strain rate protection mechanism in nacre. Sci. Rep. 1, 1 (2011).CrossRefGoogle ScholarPubMed
Li, X.D., Chang, W.C., Chao, Y.J., Wang, R.Z., and Chang, M.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613 (2004).CrossRefGoogle Scholar
Huang, Z. and Li, X.: Origin of flaw-tolerance in nacre. Sci. Rep. 3, 1 (2013).Google ScholarPubMed
Bonderer, L.J., Studart, A.R., and Gauckler, L.J.: Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069 (2008).CrossRefGoogle ScholarPubMed
Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., Mao, S., and Han, X.: Cloning Nacre’s 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties. Adv. Mater. 28, 5099 (2016).CrossRefGoogle ScholarPubMed
Gao, H.L., Chen, S.M., Mao, L.B., Song, Z.Q., Yao, H.B., Colfen, H., Luo, X.S., Zhang, F., Pan, Z., Meng, Y.F., Ni, Y., and Yu, S.H.: Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8, 1 (2017).CrossRefGoogle ScholarPubMed
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., Tomsia, A.P., and Ritchie, R.O.: Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50 (2016).CrossRefGoogle ScholarPubMed
Tang, Z., Kotov, N.A., Magonov, S., and Ozturk, B.: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003).CrossRefGoogle ScholarPubMed
Das, P., Thomas, H., Moeller, M., and Walther, A.: Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles. Sci. Rep. 7, 1 (2017).Google ScholarPubMed
Wang, J., Cheng, Q., Lin, L., and Jiang, L.: Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8, 2739 (2014).CrossRefGoogle ScholarPubMed
Zhang, Y. and Li, X.: Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett. 17, 6907 (2017).CrossRefGoogle Scholar
Zhao, N., Yang, M., Zhao, Q., Gao, W., Xie, T., and Bai, H.: Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano 11, 4777 (2017).CrossRefGoogle ScholarPubMed
Cheng, Q., Li, M., Jiang, L., and Tang, Z.: Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv. Mater. 24, 1838 (2012).CrossRefGoogle ScholarPubMed
Wan, S., Zhang, Q., Zhou, X., Li, D., Ji, B., Jiang, L., and Cheng, Q.: Fatigue resistant bioinspired composite from synergistic two-dimensional nanocomponents. ACS Nano 11, 7074 (2017).CrossRefGoogle ScholarPubMed
Wan, S., Xu, F., Jiang, L., and Cheng, Q.: Superior fatigue resistant bioinspired graphene-based nanocomposite via synergistic interfacial interactions. Adv. Funct. Mater. 27, 1 (2017).Google Scholar
Decher, G.: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232 (1997).CrossRefGoogle Scholar
Burghard, Z., Zini, L., Srot, V., Bellina, P., van Aken, P.A., and Bill, J.: Toughening through nature-adapted nanoscale design. Nano Lett. 9, 4103 (2009).CrossRefGoogle ScholarPubMed
De Guire, M.R., Niesen, T.P., Supothina, S., Wolff, J., Bill, J., Sukenik, C.N., Aldinger, F., Heuer, A.H., and Ruhle, M.: Synthesis of oxide and non-oxide inorganic materials at organic surfaces. Z. Metallkd. 89, 758 (1998).Google Scholar
Tan, H.F., Zhang, B., Yan, J.W., Sun, X.D., and Zhang, G.P.: Synthesis and toughening behavior of bio-inspired nanocrystalline TiO2/polyelectrolyte nanolayered composites. Mater. Res. Bull. 50, 128 (2014).CrossRefGoogle Scholar
Zhang, B., Tan, H.F., Yan, J.W., Zhang, M.D., Sun, X.D., and Zhang, G.P.: Microstructures and mechanical performance of polyelectrolyte/nanocrystalline TiO2 nanolayered composites. Nanoscale Res. Lett. 8, 1 (2013).CrossRefGoogle ScholarPubMed
Burghard, Z., Tucic, A., and Jeurgens, L.P.H.: Nanomechanical properties of bioinspired organic–inorganic composite films. Adv. Mater. 19, 970 (2007).CrossRefGoogle Scholar
Yang, Y.J., Zhang, B., Tan, H.F., Luo, X.M., and Zhang, G.P.: Fatigue and fracture reliability of shell-mimetic PE/TiO2 nanolayered composites. Adv. Eng. Mater. 19, 1 (2017).CrossRefGoogle Scholar
Gao, H.J., Ji, B.H., Jager, I.L., Arzt, E., and Fratzl, P.: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).CrossRefGoogle ScholarPubMed
Hoffmann, R.C., Bartolome, J.C., Wildhack, S., Jeurgens, L.P.H., Bill, J., and Aldinger, F.: Relation between particle growth kinetics in solution and surface morphology of thin films: Implications on the deposition of titania on polyethylene terephthalate. Thin Solid Films 478, 164 (2005).CrossRefGoogle Scholar
Ohmura, T., Matsuoka, S., Tanaka, K., and Yoshida, T.: Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate. Thin Solid Films 385, 198 (2001).CrossRefGoogle Scholar
Jian, S.R., Chen, G.J., and Lin, T.C.: Berkovich nanoindentation on AlN thin films. Nanoscale Res. Lett. 5, 935 (2010).CrossRefGoogle ScholarPubMed
Xia, Z., Curtin, W.A., and Sheldon, B.W.: A new method to evaluate the fracture toughness of thin films. Acta Mater. 52, 3507 (2004).CrossRefGoogle Scholar
Dai, C.Y., Zhu, X.F., and Zhang, G.P.: Tensile and fatigue properties of free-standing Cu foils. J. Mater. Sci. Technol. 25, 721 (2009).Google Scholar
Yamabi, S. and Imai, H.: Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions. Chem. Mater. 14, 609 (2002).CrossRefGoogle Scholar
Ji, B.H. and Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mater. Sci. Technol. 52, 1963 (2004).Google Scholar
Wang, D., Volkert, C.A., and Kraft, O.: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).CrossRefGoogle Scholar
Gerberich, W.W., Michler, J., Mook, W.M., Ghisleni, R., Östlund, F., Stauffer, D.D., and Ballarini, R.: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 898 (2009).CrossRefGoogle Scholar
Suresh, S.: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
Tao, X., Liu, J., Koley, G., and Li, X.: B/SiOx nanonecklace reinforced nanocomposites by unique mechanical interlocking mechanism. Adv. Mater. 20, 4091 (2008).CrossRefGoogle Scholar