Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:39:18.805Z Has data issue: false hasContentIssue false

Optimization of Ta–Si–N thin films for use as oxidation-resistant diffusion barriers

Published online by Cambridge University Press:  31 January 2011

C. Cabral Jr.
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
K. L. Saenger
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
D. E. Kotecki
Affiliation:
University of Maine, Orono, Maine 04469
J. M. E. Harper
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Extract

We have demonstrated that the optimum Ta–Si–N compositions for use as oxygen diffusion barriers in stacked-capacitor dynamic random-access memory structures with perovskite dielectrics are in the range Ta(20–25 at.%)–Si(20–45 at.%)–N(35–60 at.%). Twenty-two different Ta–Si–N compositions were evaluated, starting from six sputter-deposited Ta–Si alloys of which four were reactively deposited in 2–8% nitrogen in an argon plasma. The barriers were evaluated after an aggressive 650 °C/30 min oxygen anneal to determine if they remained electrically conductive, prevented oxygen diffusion and formation of low dielectric constant oxides, and had minimal interaction with the Pt electrode and underlying Si plug. Rutherford backscattering spectroscopy, four-point probe sheet resistance, through-film-resistance, and x-ray diffraction analysis techniques were used in the evaluation.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kolawa, E., Chen, J.S., Reid, J.S., Pokela, P.J., and Nicolet, M-A., J. Appl. Phys. 70, 1369 (1991).CrossRefGoogle Scholar
2.Reid, J.S., Kolawa, E., Ruiz, R.P., and Nicolet, M-A., Thin Solid Films 236, 319 (1993).CrossRefGoogle Scholar
3.Reid, J.S., Sun, X., Kolawa, E., and Nicolet, M-A., IEEE Electron Device Lett. 15, 298 (1994).CrossRefGoogle Scholar
4.Kim, D.J., Kim, Y.T., and Park, J-W., J. Appl. Phys. 82, 4847 (1997).CrossRefGoogle Scholar
5.Kolawa, E., Molarius, J.M., Nieh, C.W., and Nicolet, M-A., J. Vac. Sci. Technol. A, 8, 3006 (1990).CrossRefGoogle Scholar
6.Kim, D.J., Jeong, S.P., Kim, Y.T., and Park, J-W., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr., and Suo, Z. (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), p. 247.Google Scholar
7.Pokela, P.J., Reid, J.S., Kwok, C-K., Kolawa, E., and Nicolet, M-A., J. Appl. Phys. 70, 2828 (1991).CrossRefGoogle Scholar
8.Hara, T., Kitamura, T., Tanaka, M., Kobayashi, T., Sakiyama, K., Onishi, S., Ishihara, K., Kudo, J., Kino, Y., and Yamashita, N., J. Electrochem. Soc. 143, L264 (1996).CrossRefGoogle Scholar
9.Hara, T., Tanaka, M., Sakiyama, K., Onishi, S., Ishihara, K., and Kudo, J., Jpn. J. Appl. Phys. 36, L893 (1997).CrossRefGoogle Scholar
10.Grill, A., Jahnes, C., and Cabral, C. Jr., J. Mat. Res. 14, 1604 (1999).CrossRefGoogle Scholar
11.Kotecki, D.E., Baniecki, J.D., Shen, H., Laibowitz, R.B., Saenger, K.L., Lian, J.D., Shaw, T.M., Athavale, S.D., Cabral, C. Jr., Duncombe, P.R., Gutsche, M., Kunkel, G., Park, Y.J., Wang, Y.Y., and Wise, R., IBM J. Res. and Develop. 43(3), 367 (1999).CrossRefGoogle Scholar
12.Maex, K. and Van Rossum, M., Properties of Metal Silicides, (INSPEC London, United Kingdom, 1995), p. 283.Google Scholar
13. RUMP Rutherford backscattering spectroscopy analysis and simulation package (V. 4.00) software developed by Computer Graphic Service, Ltd. (CGS). Copyright 1997 Michael Thompson and Larry Doolittle Ithaca, New York.Google Scholar