Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T10:14:02.307Z Has data issue: false hasContentIssue false

Optical properties of heat-treated polyparaphenylene

Published online by Cambridge University Press:  31 January 2011

M. J. Matthews
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
S. D. M. Brown
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. Endo
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
T. Takamuku
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
T. Karaki
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
Get access

Abstract

The optical properties of heat-treated polyparaphenylene (PPP) were investigated by means of Raman and photoluminescence (PL) spectroscopy. Special attention is given to PPP heat-treated to temperatures (THT) near the carbonizing temperature region (THT ≈ 700°C) since polymer-based carbonaceous compounds with low-THT (<1000 °C) have been found to exhibit electrochemical properties that strongly contrast both the as-prepared polymer and fully carbonized samples. The Raman spectra show that for THT in the range 650–725°C, several Raman bands near 1300 cm−1 can be correlated with both ground-state benzenoid and excited-state quinoid PPP Ag modes. An increase in quinoid character is observed with increasing THT, which is consistent with the theoretically predicted stabilization of the quinoid form in the presence of a high density of defects. The smaller energy bandgap for π – π* transitions in the quinoid conformation relative to that for the benzenoid form allows for a resonance condition to be present for laser excitation wavelengths (λexc) near the visible (∼1–2 eV). We also report a small dispersion effect in the observed quinoid breathing mode band which can be compared to dispersion effects previously reported for the case of trans-PA. The decrease in bandgap for the defect-induced quinoid form is also evidenced in the PL spectra of samples heat-treated up to 650°C, which show vibronic structure in the blue-green emission data in the energy range 2.4–3.0 eV, with well-resolved peaks separated by quinoid phonon energies of 0.165 eV. Franck–Condon analysis shows an increase in the Huang–Rhys parameter (S) with increasing THT which can be related to changes in the electron-phonon coupling of valence and conduction band states.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kiess, H. G., in Conjugated Conducting Polymers (SpringerVerlag, Berlin, 1992).CrossRefGoogle Scholar
2.Shacklette, L.W., Elsenbaumer, R. L., Chance, R. R., Sowa, J. M., Ivory, D. M., Miller, G. G., and Baughman, R. H., J. Chem. Soc., Chem. Commun., 361 (1982).Google Scholar
3.Shacklette, L.W., Elsenbaumer, R. L., and Baughman, R.H., J. Phys. Colloq. (France) 44, 559 (1983).CrossRefGoogle Scholar
4.Edwards, A., Blumstengel, S., Sokolik, I., Yun, H., Okamoto, Y., and Dorsinville, R., Synth. Met. 84, 639 (1997).CrossRefGoogle Scholar
5.Yang, Y., Pei, Q., and Heeger, A. J., Synth. Met. 78, 263 (1996).CrossRefGoogle Scholar
6.Paar, C., Stampfl, J., Tasch, S., Kreimaier, H., and Leising, G., Solid State Commun. 96, 167 (1995).CrossRefGoogle Scholar
7.Tasch, S., Brandstatter, C., Graupner, W., Hampel, S., Hochfilzer, C., List, J. W. E., Meghdadi, F., Leising, G., Schlichting, P., Rohr, U., Geerts, Y., Scherf, U., and Mullen, K., in Flat Panel Display Materials III, edited by Fulks, R. T. (Mater. Res. Soc. Symp. Proc. 471, Pittsburgh, PA, 1997), p. 325.Google Scholar
8.Ivory, D. M., Miller, G. G., Sowa, J. M., Shacklette, L. W., Chance, R. R., and Baughman, R. H., J. Chem. Phys. 71, 1506 (1979).CrossRefGoogle Scholar
9.Pron, A., Billaud, D., Kulszewicz, I., Budrowski, C., Przylluski, J., and Suwalski, J., Mater. Res. Bull. 16, 1229 (1981).CrossRefGoogle Scholar
10.Bredas, J. L., Chance, R. R., and Silbey, R., Phys. Rev. B 26, 5843 (1982).CrossRefGoogle Scholar
11.Matthews, M. J., Dresselhaus, M. S., Endo, M., Sasabe, Y., Takahashi, T., and Takeuchi, K., J. Mater. Res. 11, 3099 (1996).CrossRefGoogle Scholar
12.Mohri, M., Yanagisawa, J., Tajima, Y., Tanaka, H., Mitate, T., Nakajima, S., Yoshida, M., Yoshimoto, Y., Suzuki, T., and Wada, H., J. Power Sources 26, 545 (1989).CrossRefGoogle Scholar
13.Kuribayashi, I., Yokoyama, M., and Yamashita, M., J. Power Sources 54, 1 (1995).CrossRefGoogle Scholar
14.Yazami, R. and Guerard, D., J. Power Sources 43, 39 (1993).CrossRefGoogle Scholar
15.Guyomard, D. and Tarascon, J-M., Adv. Mater. 6, 408 (1994).CrossRefGoogle Scholar
16.Armand, M., in Materials for Advanced Batteries (Plenum, New York, 1980).Google Scholar
17.Dahn, J. R., Sleigh, A. K., Shi, H., Way, B. M., Weycanz, W. J., Reimers, J. N., Zhong, Q., and U. von Sacken, in New Materials and Perspectives (North-Holland, Amsterdam, 1993).Google Scholar
18.Zheng, T., Reimers, J. N., and Dahn, J. R., Phys. Rev. B 51, 734 (1995).CrossRefGoogle Scholar
19.Sato, K., Noguchi, M., Demachi, A., Oki, N., and Endo, M., Science 264, 556 (1994).CrossRefGoogle Scholar
20.Endo, M., Nishimura, Y., Takahashi, T., and Takeuchi, K., J. Phys. Chem. Solids 57, 725 (1996).CrossRefGoogle Scholar
21.Matthews, M. J., Bi, X. X., Dresselhaus, M. S., Endo, M., and Takahashi, T., Appl. Phys. Lett. 68, 1078 (1996).CrossRefGoogle Scholar
22.Heim, A., Leising, G., and Kahlert, H., J. Luminescence 31–32, 573 (1984).CrossRefGoogle Scholar
23.Aaron, J. J., Aeiyach, S., and Lacaze, P. C., J. Luminescence 42, 57 (1988).CrossRefGoogle Scholar
24.Jin, C. Q., Lu, S. Z., Rzepka, E., and Lefrant, S., J. Luminescence 48&49, 368 (1991).Google Scholar
25.Hu, B., Zhang, X., Zhou, Y., Jin, C., and Zhang, J., Phys. Rev. B 43, 14001 (1991).Google Scholar
26.Kovacic, P. and Kyriakis, A., J. Am. Chem. Soc. 85, 454 (1963).CrossRefGoogle Scholar
27.Krichene, S., Lefrant, S., Froyer, G., Maurice, F., and Pelous, Y., J. Phys. (Paris) Colloq. 44, C3733 (1983).CrossRefGoogle Scholar
28.Krichene, S., Buisson, J. P., and Lefrant, S., Synth. Met. 17, 589 (1987).CrossRefGoogle Scholar
29.Iqbal, Z., Bill, H., and Baughman, R. H., J. Phys. (Paris) Colloq. 44, C3761 (1983).CrossRefGoogle Scholar
30.Zannoni, G. and Zerbi, G., J. Chem. Phys. 82, 31 (1985).CrossRefGoogle Scholar
31.Soto, J., Hernandez, V., and Lopez Navarrete, J. T., Synth. Met. 51, 229 (1992).CrossRefGoogle Scholar
32.Bredas, J. L., Themans, B., Fripiat, J. G., Andre, J. M., and Chance, R. R., Phys. Rev. B 29, 6761 (1984).CrossRefGoogle Scholar
33.Furukawa, Y., Ohtsuka, H., and Tasumi, M., Synth. Met. 55–57, 516 (1993).CrossRefGoogle Scholar
34.Mott, N. F. and Davis, E. A., in Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1979).Google Scholar
35.Harada, I., Tasumi, M., Shirakawa, H., and Ikeda, S., Chem. Lett., 1411 (1978).CrossRefGoogle Scholar
36.Fitchen, D. B., Mol. Cryst. Liq. Cryst. 83, 95 (1982).CrossRefGoogle Scholar
37.Lefrant, S., J. Phys. (Paris) Colloq. 44, C3247 (1983).CrossRefGoogle Scholar
38.Mulazzi, E., Brivio, G. P., Faulques, E., and Lefrant, S., Solid State Commun. 46, 851 (1983).CrossRefGoogle Scholar
39.Kuzmany, H., Physica Status Solidi B 97, 521 (1980).CrossRefGoogle Scholar
40.Kuzmany, H., Imhoff, E. A., Fitchen, D. B., and Sarhangi, A., Phys. Rev. B 26, 7109 (1982).CrossRefGoogle Scholar
41.Brivio, G. P. and Mulazzi, E., Phys. Rev. B 30, 876 (1984).CrossRefGoogle Scholar
42.Mulazzi, E. and Brivio, G. P., Mol. Cryst. Liq. Cryst. 105, 233 (1984).CrossRefGoogle Scholar
43.Tiziani, R., Brivio, G. P., and Mulazzi, E., Phys. Rev. B 31, 4015 (1985).CrossRefGoogle Scholar
44.Lefrant, S., Faulques, E., Brivio, G. P., and Mulazzi, E., Solid State Commun. 53, 583 (1985).CrossRefGoogle Scholar
45.Bozovic, I. and Rakovic, D., Phys. Rev. B 32, 4235 (1985).CrossRefGoogle Scholar
46.Vidano, R. P., Fischbach, D. B., Willis, L. J., and Loehr, T. M., Solid State Commun. 39, 341 (1981).CrossRefGoogle Scholar
47.Baranov, A. V., Bekhterev, A. N., Bobovich, Ya. S., and Petrov, V. I., Opt. Spect. (USSR) 62, 612 (1987).Google Scholar
48.Rzepka, E., Jin, C. Q., and Lefrant, S., Synth. Metals 29, E23 (1989).CrossRefGoogle Scholar
49.Yamamoto, T., Hayashi, Y., and Yamamoto, A., Bull. Chem. Soc. Jpn. 51, 2091 (1978).CrossRefGoogle Scholar
50.Fauvarque, J. F., Digua, A., Petit, M. A., and Savard, J., Makromol. Chem. 186, 2415 (1985).CrossRefGoogle Scholar
51.Froyer, G., Maurice, F., Bernier, P., and McAndrew, P., Polymer 23, 1103 (1982).CrossRefGoogle Scholar
52.Lerner, N. R., J. Poly. Sci. 12, 2477 (1974).Google Scholar
53.Henderson, A. and Imbusch, G. F., in Optical Spectroscopy of Inorganic Solids (Oxford Science Publications, Oxford, 1989).Google Scholar
54.Leising, G., Leitner, O., Aldrian, F., and Kalhert, H., Synth. Metals 17, 635 (1987).CrossRefGoogle Scholar
55.Matthews, M. J., Ph.D. Thesis, Department of Physics, Massachusetts Institute of Technology (1998).Google Scholar