Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T11:20:37.843Z Has data issue: false hasContentIssue false

On the exclusive growth of external chromia scale on the novel electrodeposited Cu–Ni–Cr nanocomposites

Published online by Cambridge University Press:  31 January 2011

Z. Huang
Affiliation:
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
X. Peng*
Affiliation:
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
C. Xu
Affiliation:
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
F. Wang
Affiliation:
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Novel metal-matrix nanocomposites (MMNCs) of Cu–30Ni–20Cr and Cu–50Ni–20Cr (by wt%), having a nanocrystalline Cu–Ni solid solution matrix with the dispersion of Cr nanoparticles, were fabricated by coelectrodeposition. Both nanocomposites exclusively grew external chromia scale during oxidation at 800 °C in air. The codeposited Cr nanoparticles, together with the numerous grain boundaries in the Cu–Ni matrix, promoted the establishment of a continuous chromia scale during the initial and transient oxidation stage, and then they functioned as “a reservoir” supplying sufficient Cr flux for the exclusive growth of the scale during the steady-state stage. The theoretical treatment using a two-phase alloy oxidation model indicates that high Cr diffusivity correlated with the persistence of an ultrafine-grained structure of the Cu–Ni matrix during oxidation is crucial to the exclusive chromia growth. Ni content increase did not significantly affect the chromia scale formation. This is fundamentally different from the oxidation of conventional Cu–Ni–Cr alloys investigated for comparison.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Porter, D.A.Easterling, K.E.: Phase Transformation in Metals and Alloys Chapman & Hall London 1992 60CrossRefGoogle Scholar
2Jin, Y., Adachi, K., Takeuchi, T.Suzuki, H.G.: Microstructural evolution of a heavily cold-rolled Cu–Cr in site metal matrix composite. Mater. Sci. Eng., A 212, 149 1996CrossRefGoogle Scholar
3Lees, K.K.: Effect of oxidation on the creep behaviour of copper– chromium in situ composite. Composites Part A 34, 1235 2003Google Scholar
4Hangsurd, R.Lee, K.L.: On the oxidation behaviour of a Cu– 10 vol% Cr in situ composite. Mater. Sci. Eng., A 396, 87 2005Google Scholar
5Ikoma, T.Kajihara, M.: Thermodynamic evaluation of phase equilibria in the ternary Cu–Cr–Ni system. Mater. Sci. Eng., A 437, 293 2006CrossRefGoogle Scholar
6Niu, Y., Gesmundo, F., Viani, F.Douglass, D.L.: The air oxidation of two-phase Cu–Cr alloys at 700–900 °C. Oxid. Met. 48, 357 1997CrossRefGoogle Scholar
7Gesmundo, F., Niu, Y., Viani, F.Douglass, D.L.: The oxidation of two-phase Cu–Cr alloys under 10−19 atm O2 at 700–900 °C. Oxid. Met. 49, 147 1998CrossRefGoogle Scholar
8Giggins, C.S.Pettit, F.S.: The effect of alloy grain-size and surface deformation on the selective oxidation of chromium on Ni–Cr alloys at temperature of 900 °C and 1100 °C. Trans. TMS-AIME 245, 2495 1969Google Scholar
9Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 1989CrossRefGoogle Scholar
10Jin, M., He, Y.D., De, D.R., Li, Z.W.Gao, W.: Oxidation of two-phase Cu–50 Cr alloy at low oxygen pressure. Mater. Sci. Eng., A 434, 141 2006Google Scholar
11Cao, Z.Q., Niu, Y.Gesmundo, F.: Oxidation of two ternary Cu–Ni–20 wt% Cr alloys at 700–800 °C in 1 atm O2. Oxid. Met. 56, 287 2001CrossRefGoogle Scholar
12Niu, Y., Cao, Z.Q., Gesmundo, F., Farnè, F.G., Randi, G.G.Wang, G.C.L.: Grain size effects on the oxidation of two ternary Cu–Ni–20 wt% Cr alloys at 700–800 °C in 1 atm O2. Corros. Sci. 45, 1125 2003CrossRefGoogle Scholar
13Huang, Z., Peng, X.Wang, F.: Preparation and oxidation of novel electrodeposited Cu–Ni–Cr nanocomposites. Oxid. Met. 65, 223 2006CrossRefGoogle Scholar
14Wagner, C.: Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J. Electrochem. Soc. 99, 369 1952CrossRefGoogle Scholar
15Wagner, C.: Oxidation of alloys involving noble metals. J. Electrochem. Soc. 103, 571 1956CrossRefGoogle Scholar
16Peng, X., Ping, D., Li, T.Wu, W.: Oxidation behavior of a Ni–La2O3 codeposited film on nickel. J. Electrochem. Soc. 145, 389 1998CrossRefGoogle Scholar
17Peng, X., Li, T.Wu, W.: Effect of La2O3 particles on the oxidation of electrodeposited nickel films. Oxid Met. 51, 291 1999CrossRefGoogle Scholar
18Huang, Z.: Preparation and oxidation properties of novel Cu– Ni–Cr nanocomposite coatings. Ph.D. Thesis, Institute of Metal Research, Chinese Academy of Sciences, China,2006Google Scholar
19Zhang, Y., Peng, X.Wang, F.: A novel electrodeposited Ni–Cr nanocomposite film. Mater. Lett. 58, 1138 2004Google Scholar
20Ownby, P.D.Jungquist, G.E.: Final sintering of Cr2O3. J. Am. Ceram. Soc. 55, 433 1972CrossRefGoogle Scholar
21Halloran, J.W.Anderson, H.U.: Influence of O2 partial pressure on initial sintering of alpha Cr2O3. J. Am. Ceram. Soc. 57, 150 1974CrossRefGoogle Scholar
22Kofstad, P.Lillerud, K.P.: On high temperature oxidation of chromium. J. Electrochem. Soc. 127, 2410 1980CrossRefGoogle Scholar
23Ganapathi, S.K., Owen, D.W.Chokshi, A.H.: The kinetics of grain growth in nanocrystalline copper. Scripta Metall. Mater. 25, 2699 1991CrossRefGoogle Scholar
24Iordache, M.C., Wang, S.H., Jiao, Z.Wang, Z.: Grain growth kinetics in nanostructured nickel. Nanostruct. Mater. 11, 1343 1999CrossRefGoogle Scholar
25Hart, E.W.: On the role of dislocations in bulk diffusion. Acta Metall. 5, 597 1957CrossRefGoogle Scholar
26Fultz, B.Frase, H.N.: Grain boundaries of nanocrystalline materials—their widths, compositions, and internal structures. Hyperfine Interact. 130, 81 2000CrossRefGoogle Scholar
27Shih, D-Y., Chang, A-A., Paraszczak, J.Cataldo, S. Nunes: Thin-film interdiffusions in Cu/Pd, Cu/Pt, Cu/Ni, Cu/NiB, Cu/Co, Cu/Cr, Cu/Ti, and Cu/TiN bilayer films: Correlations of sheet resistance with Rutherford backscattering spectrometries. J. Appl. Phys. 70, 3052 1991CrossRefGoogle Scholar
28Wahl, G.: Coating composition and the formation of protective oxide layers at high temperatures. Thin Solid Films 107, 417 1983CrossRefGoogle Scholar
29Wang, G., Gleeson, B.Douglass, D.L.: An extension of Wagner’s analysis of competing scale formation. Oxid. Met. 35, 333 1991CrossRefGoogle Scholar
30Gesmundo, F.Gleeson, B.: Oxidation of multicomponent two-phase alloys. Oxid. Met. 44, 211 1995CrossRefGoogle Scholar
31Carter, P., Gleeson, B.Young, D.J.: Calculation of precipitate dissolution zone kinetics in oxidation of binary two-phase alloys. Acta Mater. 44, 4033 1995CrossRefGoogle Scholar
32Kofstad, P.: High Temperature Corrosion Elsevier Applied Sciences Oxford 1988 5Google Scholar
33Hansen, M.: Constitution of Binary Alloys McGraw-Hill New York 1965 121Google Scholar
34Dahshan, M.E. El, Whittle, D.P.Stringer, J.: The oxidation of cobalt–chromium–carbon alloys. Cobalt 4, 86 1974Google Scholar
35Coble, R.L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 1963CrossRefGoogle Scholar
36Ashby, M.F.Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149 1973CrossRefGoogle Scholar
37Limarga, A.M.Wilkinson, D.S.: Modeling the interaction between creep deformation and scale growth process. Acta Mater. 55, 189 2007CrossRefGoogle Scholar