Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:44:32.977Z Has data issue: false hasContentIssue false

On the determination of hardness and elastic modulus in BaFe2As2 lamellar-like material

Published online by Cambridge University Press:  10 May 2016

Gelson B. de Souza*
Affiliation:
Universidade Estadual de Ponta Grossa, Department of Physics, 84.030-000, Ponta Grossa, PR, Brazil
Francisco C. Serbena
Affiliation:
Universidade Estadual de Ponta Grossa, Department of Physics, 84.030-000, Ponta Grossa, PR, Brazil
Alcione R. Jurelo
Affiliation:
Universidade Estadual de Ponta Grossa, Department of Physics, 84.030-000, Ponta Grossa, PR, Brazil
Simone A. da Silva
Affiliation:
Universidade Estadual de Ponta Grossa, Department of Physics, 84.030-000, Ponta Grossa, PR, Brazil
Lincoln B.L.G. Pinheiro
Affiliation:
Instituto Federal de São Paulo, 13.565-905, São Carlos, SP, Brazil
Fábio T. Dias
Affiliation:
Department of Physics, Universidade Federal de Pelotas, 96.010-900, Pelotas, RS, Brazil
Alexandre Mikowski
Affiliation:
Universidade Federal de Santa Catarina, 89.218-035, Joinville, SC, Brazil
Sergey L. Bud'ko
Affiliation:
Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
Alex Thaler
Affiliation:
Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
Paul C. Canfield
Affiliation:
Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
*
a)Address all correspondence to this author. e-mail: [email protected]; [email protected]
Get access

Abstract

The mechanical behavior of superconductor lamellar-like BaFe2As2 single crystals was investigated at nanoscale by instrumented indentation. The unique responses of the ab- and a(b)c-crystallographic planes were discussed based on their influence in hardness (H) and elastic modulus (E). The results allowed two main conclusions. (i) The choice of testing parameters strongly affected the scaling of mechanical properties on the lamellar surfaces. Lamellar cracking was the leading mechanism of deformation, featuring a brittle-like behavior and affecting considerably H and E. However, the plastic deformation history allowed different elastic–plastic responses on the ab-plane owing to the compaction of the material. Threshold loads for cracking depended on both loading rate and penetration velocity, pointing out to time-dependent plastic deformation mechanisms. (ii) Proper estimates were achieved for H in multiple loading tests [3.4 GPa for ab- and ∼1 GPa for a(b)c-planes], and for E under loads less than 3 mN (∼55 GPa for both planes).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bouville, F., Maire, E., Meille, S., Van De Moortèle, B., Stevenson, A.J., and Deville, S.: Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13(5), 508 (2014).Google Scholar
Barsoum, M.W., Murugaiah, A., Kalidindi, S.R., Zhen, T., and Gogotsi, Y.: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42(8–9), 1435 (2004).Google Scholar
Buehler, M.J.: Nano- and micromechanical properties of hierarchical biological materials and tissues. J. Mater. Sci. 42(21), 8765 (2007).Google Scholar
Serbena, F.C., Foerster, C.E., Jurelo, A.R., Mikowski, A., Júnior, P.R., Carubelli, C.R., and Lepienski, C.M.: Depth-Sensing indentation on REBa2Cu3O7−δ single crystals obtained from xenotime mineral. Braz. J. Phys. 42(5–6), 330 (2012).CrossRefGoogle Scholar
Dias, F.T., Pinheiro, L.B.L.G., de Souza, G.B., Serbena, F.C., da Silva, S.A., Jurelo, A.R., Bud'ko, S.L., Thaler, A., and Canfield, P.C.: Nanoscratch and indentation fracture toughness in superconductor Ba–Fe–As single crystals with lamellar structure. Tribol. Int. 79, 84 (2014).CrossRefGoogle Scholar
Studart, A.R., Libanori, R., and Erb, R.M.: Replicating biological design principles in synthetic composites. In Materials Design Inspired by Nature: Function Through Inner Architecture, Fratzl, P., Dunlop, J.W.C. and Weinkamer, R. eds.; RSC Publishing: Cambridge, U.K., 2013; pp. 322358.CrossRefGoogle Scholar
Mikowski, A., Soares, P., Wypych, F., and Lepienski, C.M.: Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique. Am. Mineral. 93(5–6), 844 (2008).CrossRefGoogle Scholar
Lepienski, C.M., Meruvia, M.S., Veiga, W., and Wypych, F.: Mechanical properties of niobium disulfide and its hydrated sodium cation intercalation compound. J. Mater. Res. 15(10), 2061 (2000).Google Scholar
Mosca, D.H., Mattoso, N., Lepienski, C.M., Veiga, W., Mazzaro, I., Etgens, V.H., and Eddrief, M.: Mechanical properties of layered InSe and GaSe single crystals. J. Appl. Phys. 91(1), 140 (2002).Google Scholar
Veiga, W. and Lepienski, C.M.: Nanomechanical properties of lead iodide (PbI2) layered crystals. Mater. Sci. Eng., A 335, 6 (2002).CrossRefGoogle Scholar
Mikowski, A., Soares, P., Wypych, F., Gardolinski, J.E.F.C., and Lepienski, C.: Mechanical properties of kaolinite ‘macro-crystals’. Philos. Mag. 87(29), 4445 (2007).Google Scholar
Meyers, M.A., Chen, P-Y., Lopez, M.I., Seki, Y., and Lin, A.Y.M.: Biological materials: A materials science approach. J. Mech. Behav. Biomed. Mater. 4(5), 626 (2011).Google Scholar
Mikowski, A., Serbena, F.C., Foerster, C.E., Jurelo, A.R., and Lepienski, C.M.: A method to measure fracture toughness using indentation in REBa2Cu3O7−δ superconductor single crystals. J. Appl. Phys. 110(10), 103504 (2011).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
Fischer-Cripps, A.C.: Introduction to Contact Mechanics, 2nd ed. (Springer-Verlag, New York, USA, 2000); p. 157.Google Scholar
Tian, Y., Xu, B., and Zhao, Z.: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).Google Scholar
Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., and Hosono, H.: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128(31), 10012 (2006).Google Scholar
Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H.: Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with T c = 26 K. J. Am. Chem. Soc. 130(11), 3296 (2008).Google Scholar
Rotter, M., Tegel, M., and Johrendt, D.: Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 101(10), 107006 (2008).CrossRefGoogle ScholarPubMed
Hsu, F.-C., Luo, J.-Y., Yeh, K.-W., Chen, T.-K., Huang, T.-W., Wu, P.M., Lee, Y.-C., Huang, Y.-L., Chu, Y.-Y., Yan, D.-C., and Wu, M.-K.: Superconductivity in the PbO-type structure alpha-FeSe. Proc. Natl. Acad. Sci. U. S. A. 105, 14262 (2008).CrossRefGoogle ScholarPubMed
Wang, X.C., Liu, Q.Q., Lv, Y.X., Gao, W.B., Yang, L.X., Yu, R.C., Li, F.Y., and Jin, C.Q.: The superconductivity at 18 K in LiFeAs system. Solid State Commun. 148(11–12), 538 (2008).Google Scholar
Ni, N., Nandi, S., Kreyssig, A., Goldman, A.I., Mun, E.D., Bud'ko, S.L., and Canfield, P.C.: First order structural phase transition in CaFe2As2. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 14523 (2008).Google Scholar
Rotter, M., Tegel, M., Johrendt, D., Schellenberg, I., Hermes, W., and Pöttgen, R.: Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2. Phys. Rev. B: Condens. Matter Mater. Phys. 78(2), 20503 (2008).CrossRefGoogle Scholar
Pimentel, J.L., Jurelo, A.R., Foerster, C.E., Rodrigues, P., and Costa, R.M.: Mechanical properties of FeSex superconductor. Phys. C 470(S411–S412), 2009 (2010).Google Scholar
Pimentel, J.L., Serbena, F.C., and Jurelo, A.R.: Characterization of FeSex superconductor prepared by different thermal routes by instrumented indentation. J. Supercond. Novel Magn. 24(5), 1437 (2010).Google Scholar
Pimentel, J.L., Pureur, P., Lopes, C.S., Serbena, F.C., Foerster, C.E., da Silva, S.A., Jurelo, A.R., and Chinelatto, A.L.: Mechanical properties of highly oriented FeSe0.5Te0.5 superconductor. J. Appl. Phys. 111(3), 033908 (2012).Google Scholar
Jurelo, A.R., Serbena, F.C., de Souza, G.B., Foerster, C.E., Sabino, N.B., da Silva, S.A., Lopes, C.S., and Pimentel, J.L.: Nanoscratch in highly oriented FeSe0.5Te0.5 superconductor. Wear 303(1–2), 78 (2013).Google Scholar
Thaler, A., Hodovanets, H., Torikachvili, M.S., Ran, S., Kracher, A., Straszheim, W., Yan, J.Q., Mun, E., and Canfield, P.C.: Physical and magnetic properties of Ba(Fe(1−x)Mnx)2As2 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 1444528 (2011).Google Scholar
Foerster, C.E., Serbena, F.C., Jurelo, A.R., Ferreira, T.R., Rodrigues, P., and Chinelatto, A.L.: Mechanical properties of REBa2Cu3O7−d superconductor with RE obtained from xenotime mineral. IEEE Trans. Appl. Supercond. 21(2), 52 (2011).CrossRefGoogle Scholar
Pinheiro, L.B.L.G., Jurelo, A.R., Serbena, F.C., Rodrigues, P., Foerster, C.E., and Chinelatto, A.L.: Mechanical characterization of melt-textured Y0.95Er0.05Ba2Cu3O7−δ superconductor prepared in air. Phys. C 470(11–12), 465 (2010).CrossRefGoogle Scholar
Foerster, C.E., Lima, E., Serbena, F.C., Lepienski, C.M., Jurelo, A.R., and Obradors, X.: Mechanical properties of Ag-doped top-seeded melt-grown YBCO Pellets. Braz. J. Phys. 38(3), 341 (2008).Google Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998).Google Scholar
Kimber, S.A.J., Kreyssig, A., Zhang, Y-Z., Jeschke, H.O., Valentí, R., Yokaichiya, F., Colombier, E., Yan, J., Hansen, T.C., Chatterji, T., McQueeney, R.J., Canfield, P.C., Goldman, A.I., and Argyriou, D.N.: Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2. Nat. Mater. 8(6), 471 (2009).Google Scholar
Niu, T. and Cao, G.: Finite size effect does not depend on the loading history in soft matter indentation. J. Phys. D: Appl. Phys. 47(38), 385303 (2014).Google Scholar