Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T05:29:28.821Z Has data issue: false hasContentIssue false

A novel mosaic-like structure in SrTiO3 thin films on a Pt(001) surface revealed by transmission electron microscopy

Published online by Cambridge University Press:  31 January 2011

S. Takeno
Affiliation:
Environmental Engineering Lab., R/D Center, Toshiba Corp., 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan
S. Nakamura
Affiliation:
Environmental Engineering Lab., R/D Center, Toshiba Corp., 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan
K. Abe
Affiliation:
Materials & Devices Labs., R/D Center, Toshiba Corp., 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan
S. Komatsu
Affiliation:
Materials & Devices Labs., R/D Center, Toshiba Corp., 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan
Get access

Abstract

A novel mosaic-like structure in SrTiO3 thin films was discovered and characterized by means of transmission electron microscopy (TEM). The films were deposited on a (001) oriented Pt surface. The orientation relationship between SrTiO3 film and Pt substrate was determined, and four types of growth modes were revealed. These four growth modes formed four types of domains, respectively, and these domains and Pt formed peculiarly ordered interfacial structures, i.e., near coincidence site lattices. Antiphase boundaries between two adjacent domains were also observed by high-resolution imaging.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Abe, K. and Komatsu, S., Jpn. J. Appl. Phys. 31, 2985 (1992).Google Scholar
2.Torii, K., Kaga, T., and Takeda, E., Jpn. J. Appl. Phys. 31, 2989 (1992).CrossRefGoogle Scholar
3.Kuroiwa, T., Honda, T., Watarai, H., and Sato, K., Jpn. J. Appl. Phys. 31, 3025 (1992).CrossRefGoogle Scholar
4.Kiyotoshi, M. and Eguchi, K., Appl. Phys. Lett. 67, 2468 (1995).CrossRefGoogle Scholar
5.Ueno, S. and Ishiwara, H., Jpn. J. Appl. Phys. 31, 2982 (1992).CrossRefGoogle Scholar
6.Tabata, H., Murata, O., Kawai, T., Kawai, S., and Okuyama, M., Jpn. J. Appl. Phys. 31, 2968 (1992).CrossRefGoogle Scholar
7.Hayamizu, S., Yahashi, A., and Shibata, Y., Jpn. J. Appl. Phys. 31, 2975 (1992).CrossRefGoogle Scholar
8.Gao, Y., Bai, G., Merkle, K. L., Shi, Y., Chang, H. L. M., Shen, Z., and Lam, D. J., J. Mater. Res. 8, 145 (1993).CrossRefGoogle Scholar
9.Dravid, V. P., Zhang, H., Wills, L. A., and Wessels, B. W., J. Mater. Res. 9, 426 (1994).CrossRefGoogle Scholar
10.Balluffi, R. W., Brokman, A., and King, A. H., Acta Metall. 30, 1453 (1980).CrossRefGoogle Scholar
11.Takeno, S., Nakamura, S., Sagoi, M., and Miura, T., Physica C 176, 151 (1991).CrossRefGoogle Scholar
12.Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J.P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J.M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
13.Hwang, M., Laughlin, D. E., and Bernstein, I. M., Acta Metall. 28, 621 (1980).CrossRefGoogle Scholar
14.Sayle, T. X. T., Catlow, C. R., Sayle, D. C., Parker, S. C., and Harding, J.H., Philos. Mag. A 68, 565 (1993).CrossRefGoogle Scholar
15.Takeno, S., Nakamura, S., Sato, R., and Miura, T., Physica C 211, 179 (1993).CrossRefGoogle Scholar