Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T20:32:05.608Z Has data issue: false hasContentIssue false

New ferroelectric: Bis-thiourea pyridinium bromide inclusion compound

Published online by Cambridge University Press:  28 September 2012

Piotr Czarnecki
Affiliation:
Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
Aleksandra Pajzderska
Affiliation:
Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
Eric Collet
Affiliation:
Université de Rennes 1, Institut de Physique de Rennes, UMR UR1-CNRS 6251, F-35000 Rennes, France
Loic Toupet
Affiliation:
Université de Rennes 1, Institut de Physique de Rennes, UMR UR1-CNRS 6251, F-35000 Rennes, France
Jan Wąsicki*
Affiliation:
Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Dielectric measurements (permittivity and hysteresis loop) of monocrystals of bis-thiourea pyridinium bromide inclusion compound have revealed for the first time ferroelectric properties of the studied samples. In the present article, a model of ferroelectric ordering on the basis of single-crystal x-ray diffraction data is described. In the low-temperature phase, the spontaneous polarization is directed along the a axis and ferroelectricity is of the mixed type (displacement and order-disorder component), whereas in the intermediate phase the spontaneous polarization is directed along the c axis and ferroelectricity is of the order-disorder type.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).CrossRefGoogle ScholarPubMed
Ahn, C.H., Rabe, K.M., and Triscone, J.M.: Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303, 488 (2004).CrossRefGoogle ScholarPubMed
Horiuchi, S., Tokunaga, Y., Giovannetti, G., Picozzi, S., Itoh, H., Shimano, R., Kumai, R., and Tokura, Y.: Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789 (2010).CrossRefGoogle Scholar
Horiuchi, S., Ishii, F., Kumail, R., Okimoto, Y., Tachibana, H., Nagaosa, N., and Yoshinori, T.: Ferroelectricity near room temperature in cocrystals of nonpolar organic molecules. Nat. Mater. 4, 163 (2005).CrossRefGoogle ScholarPubMed
Van Aken, B.B., Palstra, T.T., Filippetti, A., and Spaldi, N.A.: The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164 (2004).CrossRefGoogle ScholarPubMed
Szafrański, M.: Simple guanidinium salts revisited: Room–temperature ferroelectricity in hydrogen-bonded supramolecular structures. J. Phys. Chem. B 115, 8755 (2011).CrossRefGoogle ScholarPubMed
Katrusiak, A. and Szafrański, M.: Ferroelectricity in NH...N hydrogen bonded crystals. Phys. Rev. Lett. 82, 576 (1999).CrossRefGoogle Scholar
8.Szafranski, M. and Jarek, M.: From nonpolar to ferroelectric crystal structure: The temperature-tuned growth of two guanidinium ethoxysulfonate polymorphs. J. Phys. Chem. B 112, 3101 (2008).CrossRefGoogle ScholarPubMed
Czarnecki, P., Nawrocik, W., Pajak, Z., and Wasicki, J.: Ferroelectric properties of pyridinium tetrafluoroborate. Phys. Rev. B 49, 1511 (1994).CrossRefGoogle ScholarPubMed
Czarnecki, P., Nawrocik, W., Pajak, Z., and Wasicki, J.: Ferroelectric properties of pyridinium perchlorate. J. Phys. Condens. Matter 6, 4955 (1994).CrossRefGoogle Scholar
Wasicki, J., Czarnecki, P., Pajak, Z., Nawrocik, W., and Szczepański, W.: Ferroelectric properties of pyridinium perrhenate. J. Chem. Phys. 107, 576 (1997).CrossRefGoogle Scholar
Pajak, Z., Czarnecki, P., Wasicki, J., and Nawrocik, W.: Ferroelectric properties of pyridinium periodate. J. Chem. Phys. 109, 6420 (1998).CrossRefGoogle Scholar
Maluszynska, H., Czarnecki, P., Lewicki, S., Wasicki, J., and Daniec, M.: Structure and dynamics of ferroelectric pyridinium periodate. J. Phys. Condens. Matter 13, 11053 (2001).CrossRefGoogle Scholar
Bobrowicz-Sarga, L., Czarnecki, P., Lewicki, S., Natkaniec, I., Nawrocik, W., and Wasicki, J.: Phase transitions in ferroelectric pyridinium periodide under high pressure. Phase Transitions 80, 725 (2007).CrossRefGoogle Scholar
Pajak, Z., Czarnecki, P., Maluszynska, H., Szafranska, B., and Szafran, M.: Ferroelectric properties of pyridinium fluorosulfonate. J. Chem. Phys. 113, 848 (2000).CrossRefGoogle Scholar
Pajak, Z., Maluszynska, H., and Czarnecki, P.: Crystal structure, molecular dynamics, and polar properties of pyridinium fluorochromate. J. Chem. Phys. 117, 5303 (2002).CrossRefGoogle Scholar
Przesławski, J., Jamiński, J., and Czapla, Z.. Specific heat anomalies in ferroelectric PyBF4. Ferroelectrics 363, 64 (2008).CrossRefGoogle Scholar
Hatori, J., Komukae, M., Czapla, Z., and Osaka, T.: Dielectric dispersion studies in pyridinium periodate single crystal. J. Phys. Soc. Jpn. 71, 1431 (2002).CrossRefGoogle Scholar
Hanaya, M., Shibazaki, H., Oguni, M., Nemoto, T., and Ohashi, Y.: Orientational ordering/disordering of ions accompanied by phase transitions in pyridinium tetrafluoroborate crystal. J. Phys. Chem. Solids 61, 651 (2000).CrossRefGoogle Scholar
Beck, B., Muller, K., and Roduner, E.: 2H NMR study of dynamics, ordering, and phase transitions in ferroelectric pyridinium tetrafluoroborate. Chem. Mater. 15, 1739 (2003).CrossRefGoogle Scholar
Józków, J., Jakubas, R., and Baran, J.: Infrared investigation of the order–disorder phase transitions in (C5H5NH)6Bi4Cl18. J. Mol. Struct. 555, 273 (2000).CrossRefGoogle Scholar
Wasicki, J., Pajzderska, A., and Fojud, Z.: Temperature dependence of spontaneous polarization in order−disorder pyridinium periodate extracted from 2H NMR data. J. Phys. Chem. C 112, 7503 (2008).CrossRefGoogle Scholar
Jozkow, J., Medycki, W., Zaleski, J., Jakubas, R., Bator, G., and Ciunik, Z.: Structure, phase transition and molecular motions in (C5H5NH)BiCl4. Phys. Chem. Chem. Phys. 3, 3222 (2001).CrossRefGoogle Scholar
Maeda, M., Okada, K., Deguchi, K., Iwata, M., and Suzuki, I.: Dielectric dispersion of pyridinium tetrafluoroborate single crystals. J. Phys. Soc. Jpn. 74, 1416 (2005).CrossRefGoogle Scholar
Hanaya, M., Nomoto, M., Miura, T., and Oguni, M.: Discovery of dipolar-glassy state in a newly found solid–solution system of C5NH6(BF4)1−x(PF6)x. Solid State Commun. 115, 57 (2000).CrossRefGoogle Scholar
Prout, K., Heyes, S.J., Dobson, C.M., McDaid, A., Maris, T., Muller, M., and Seaman, M.J.: Variable-temperature studies of order/disorder transitions in the thiourea pyridinium halide crystals by XRD and solid-state 2H NMR. Chem. Mater. 12, 3561 (2000).CrossRefGoogle Scholar
Maluszynska, H. and Czarnecki, P.: Structure, phase transitions and dielectric properties of a new inclusion compound of bis-thiourea pyridinium nitrate salt. Z. Kristallogr. 221, 218 (2006).CrossRefGoogle Scholar
Pajzderska, A., Wasicki, J., Czarnecki, P., Toupet, L., and Collet, E.: Discovery of an intermediate phase in bis-thiourea pyridinium chloride inclusion compound. J. Chem. Phys. 130, 044503 (2009).CrossRefGoogle ScholarPubMed
Maluszynska, H., Czarnecki, P., Fojud, Z., and Wasicki, J.: Redetermination of the structure and dielectric properties of bis(thiourea) pyridinium iodide–a new ferroelectric inclusion compound. Acta Crystallogr., Sect. B: Struct. Sci. 64(5), 572 (2008).CrossRefGoogle ScholarPubMed
Pajzderska, A., Gonzalez, M.A., Embs, J.P., and Wasicki, J.: Complex dynamics of pyridinium cation in ferroelectric bis(thiourea)pyridinium iodide studied by quasielastic neutron scattering. J. Phys. Chem. C 115, 15164 (2011).CrossRefGoogle Scholar
Pajzderska, A., Gonzalez, M.A., and Wasicki, J.: Molecular dynamics simulation of cation dynamics in bis-thiourea pyridinium nitrate inclusion compound. J. Chem. Phys. 135, 074508 (2011).CrossRefGoogle ScholarPubMed
Pajzderska, A., Gonzalez, M.A., and Wasicki, J.: In-plane pyridinium cation reorientation in bis-thiourea chloride, bromide and iodide: Quasielastic neutron scattering combined with molecular dynamics simulations. Phys. Chem. Chem. Phys. 14, 3949 (2012).CrossRefGoogle ScholarPubMed
Grottel, M., Kozak, A., Pajzderska, A., Szczepanski, W., and Wasicki, J.: 1H NMR study of molecular motions in thiourea pyridinium nitrate inclusion compound. Z. Naturforsch., A 59, 505 (2004).CrossRefGoogle Scholar
Grottel, M., Pajzderska, A., and Wasicki, J.: 1H NMR study of molecular motions in thiourea pyridinium halide inclusion compounds. Z. Naturforsch., A 58, 638 (2003).CrossRefGoogle Scholar
Pajzderska, A., Fojud, Z., Goc, R., and Wasicki, J.: Cation dynamics in pyridinium nitrate and bis-thiourea pyridinium nitrate inclusion compound studied by 2H NMR spectroscopy. J. Phys. Condens. Matter 19, 156220 (2007).CrossRefGoogle Scholar
Marczak, A., Czarnecki, P., and Mielcarek, S.: Dielectric spectroscopy of (bis)thiourea pyridinium bromide. Z. Naturforsch., A 59, 857 (2004).CrossRefGoogle Scholar
Pajzderska, A., Gonzalez, M.A., and Wasicki, J.: Quasielastic neutron scattering study of pyridinium cation reorientation in thiourea pyridinium nitrate inclusion compound. J. Chem. Phys. 128, 084507 (2008).CrossRefGoogle ScholarPubMed
Pajzderska, A., Czarnecki, P., Embs, J.P., Gonzalez, M.A., Juranyi, F., Krawczyk, J., Peplinska, B., and Wasicki, J.: A study of out-of-plane cation dynamics in a bis-thiourea pyridinium chloride inclusion compound. Phys. Chem. Chem. Phys. 13, 8908 (2011).CrossRefGoogle Scholar
Pajzderska, A., Collet, E., Czarnecki, P., and Wasicki, J.: Ferroelectricity of inclusion compounds of thiourea with pyridinium iodide and nitrate. J. Phys. Chem. C 113, 6282 (2009).CrossRefGoogle Scholar
Truter, M.R. and Vickery, B.L.: The crystal structure of bisthiourea pyridinium bromide. Acta Crystallogr., Sect. B 28, 387 (1972).CrossRefGoogle Scholar
Lee, W.K. and Cummins, H.Z.: Raman activation of acoustic modes in commensurate A2BX4 crystals by zone folding. Phys. Rev. B 39, 4457 (1989).CrossRefGoogle ScholarPubMed
Gibbs, A.S., Knight, K.S., and Lightfoot, P.: High-temperature phase transitions of hexagonal YMnO3. Phys. Rev. B 83, 094111 (2011).CrossRefGoogle Scholar