Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T01:39:31.437Z Has data issue: false hasContentIssue false

New combustion synthesis technique for the production of (InxGa1−x)2O3 powders: Hydrazine/metal nitrate method

Published online by Cambridge University Press:  31 January 2011

R. GarcÍa
Affiliation:
Programa de Posgrado en Física de Materiales CICESE-CCMC-UNAM Km. 103 Carretera Tijuana-Ensenada, C.P. 22860, Ensenada, México
G. A. Hirata
Affiliation:
Programa de Posgrado en Física de Materiales CICESE-CCMC-UNAM Km. 103 Carretera Tijuana-Ensenada, C.P. 22860, Ensenada, México
J. McKittrick
Affiliation:
Department of Mechanical and Aerospace Engineering and Materials Science and Engineering Program, University of California at San Diego, La Jolla, California 92093-0411
Get access

Abstract

A new low-temperature method to produce (InxGa1−x)2O3 (x = 0.1, 0.2, and 0.3) powders with high purity, high chemical homogeneity and improved crystallinity in the as-synthesized state has been developed. This procedure produced finely divided powders through an exothermic reaction between the precursors. The process starts with aqueous solutions of In(NO3)3 and Ga(NO3)3 as the precursors and hydrazine as the (noncarbonaceous) fuel. The combustion reaction occurred when heating the precursors between 150 and 200 °C in a closed vessel filled with an inert gas (Ar), which yields (InxGa1−x)2O3 directly. These materials were compared with powders prepared by a more typical combustion synthesis reaction between nitrates and a carbonaceous fuel at a higher ignition temperature of 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Srite, S. and Morkoc, H., Vac, J.. Sci. Technol. B 10 (4), 1237 (1992).Google Scholar
2.Ponce, F.A. and Bour, D.P., Nature 386, 351 (1997).CrossRefGoogle Scholar
3.Hlavacek, V. and Puszynski, J.A., Ind. Eng. Chem. Res. 35, 349 (1996).CrossRefGoogle Scholar
4.Venkatachari, K.R., Huang, D., Ostrander, S.P., Schulze, W.A., J. Mater. Res. 10, 748 (1995).CrossRefGoogle Scholar
5.Yi, H.C. and Moore, J.J., J. Mater. Sci. 25, 1159 (1990).CrossRefGoogle Scholar
6.Huang, D., Venkatachari, K.R., and Stangle, G.C., J. Mater. Res. 10, 762 (1995).CrossRefGoogle Scholar
7.Kourtakis, K., Robbins, M., Gallagher, P.K., and Tiefel, T., J. Mater. Res. 4, 1289 (1989).CrossRefGoogle Scholar
8.Zhang, Y. and Stangle, G.C., J. Mater. Res. 9, 1997 (1994).CrossRefGoogle Scholar
9.McKittrick, J., Bosze, E.J., Bacalski, C.F., and Shea, L.E., The Minerals, Metals & Materials Society 1, 139 (1999).Google Scholar
10.Kingsley, J.J. and Patil, K.C., Mater. Lett. 6, 427 (1988).CrossRefGoogle Scholar
11.Ekambaram, S. and Patil, K.C., J. Mater. Chem. 5, 905 (1995).CrossRefGoogle Scholar
12.Jain, S.R., Adiga, K.C., and Pai Verneker, V.R., Combustion and Flame 40, 71 (1981).CrossRefGoogle Scholar
13.Audrieth, L.F. and Ackerson Ogg, B., The Chemistry of Hydrazine (John Wiley & Sons, Inc., New York, 1951), p. 100.Google Scholar
14.Bosze, E.J., McKittrick, J., Hirata, G.A., and Shea, L.E., J. Electrochem. Soc. 99–40, 174 (2000).Google Scholar
15.Wagman, D.D., J. Phys. Chem. Ref. Data 11 (2), 129 (1982).Google Scholar
16.Chase, M.W., J. Phys. Chem. Ref. Data, 14 (1), 156 (1985).Google Scholar
17.Barin, I. and Platzki, G., Thermochemical Data of Pure Substances, (VCH, New York, 1995).CrossRefGoogle Scholar