Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T07:04:29.442Z Has data issue: false hasContentIssue false

N-doped ordered mesoporous carbon prepared by solid–solid grinding for supercapacitors

Published online by Cambridge University Press:  13 July 2018

Juan Du*
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Ran Liu
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Yifeng Yu
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Yue Zhang*
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Yexin Zhang*
Affiliation:
Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Aibing Chen*
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

N-doped ordered mesoporous carbon (N-OMC) has been one of the most promising choices as the electrode for supercapacitors due to its large surface area and uniform mesoporous structure. However, there is still a big challenge to prepare N-OMC using a relatively simple method. Here, a straightforward preparation of N-OMC was reported in which the precursor zeoliticimidazolate framework was in situ grown in the SBA-15 template by a fast, solvent-free, and atom economic solid–solid grinding strategy. After pyrolysis and removing of the template, the N-OMC was obtained with ordered mesoporous structure, rich oxygen and nitrogen, and a large specific surface area of 1004 m2/g. As the electrode material for supercapacitors, N-OMC displayed an excellent specific capacitance of 228 F/g at 0.2 A/g and superb charge/discharge cycling stability, which is promising for high-performance energy storage. This solid–solid grinding strategy may offer a low-cost and scalable method to produce high-performance N-OMC for the electrode from the zeoliticimidazolate framework.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Salunkhe, R.R., Tang, J., Kamachi, Y., Nakato, T., Kim, J.H., and Yamauchi, Y.: Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9, 6288 (2015).CrossRefGoogle ScholarPubMed
Wei, J., Zhou, D., Sun, Z., Deng, Y., Xia, Y., and Zhao, D.: A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23, 2322 (2013).CrossRefGoogle Scholar
Tang, D., Hu, S., Dai, F., Yi, R., Gordin, M.L., Chen, S., Song, J., and Wang, D.: Self-templated synthesis of mesoporous carbon from carbon tetrachloride precursor for supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 6779 (2016).CrossRefGoogle ScholarPubMed
Ma, J., Ren, Y., Zhou, X., Liu, L., Zhu, Y., Cheng, X., Xu, P., Li, X., Deng, Y., and Zhao, D.: Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Funct. Mater. 28, 1705268 (2018).CrossRefGoogle Scholar
Wei, J., Sun, Z., Luo, W., Li, Y., Elzatahry, A.A., Al-Enizi, A.M., Deng, Y., and Zhao, D.: New insight into the synthesis of large-pore ordered mesoporous materials. J. Am. Chem. Soc. 139, 1706 (2017).CrossRefGoogle ScholarPubMed
Chen, W., Shi, J., Zhu, T., Wang, Q., Qiao, J., and Zhang, J.: Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability. Electrochim. Acta 177, 327 (2015).CrossRefGoogle Scholar
Cai, T., Zhou, M., Ren, D., Han, G., and Guan, S.: Highly ordered mesoporous phenol–formaldehyde carbon as supercapacitor electrode material. J. Power Sources 231, 197 (2013).CrossRefGoogle Scholar
Zhu, Y., Zhao, Y., Ma, J., Cheng, X., Xie, J., Xu, P., Liu, H., Liu, H., Zhang, H., Wu, M., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J. Am. Chem. Soc. 139, 10365 (2017).CrossRefGoogle ScholarPubMed
Yang, D.S., Bhattacharjya, D., Inamdar, S., Park, J., and Yu, J.S.: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 134, 16127 (2012).CrossRefGoogle ScholarPubMed
Yue, Q., Zhang, Y., Jiang, Y., Li, J., Zhang, H., Yu, C., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Nanoengineering of core–shell magnetic mesoporous microspheres with tunable surface roughness. J. Am. Chem. Soc. 139, 4954 (2017).CrossRefGoogle ScholarPubMed
Yue, Q., Li, J., Zhang, Y., Cheng, X., Chen, X., Pan, P., Su, J., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Plasmolysis-inspired nanoengineering of functional yolk–shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc. 139, 15486 (2017).CrossRefGoogle ScholarPubMed
Hu, Y., Liu, H., Ke, Q., and Wang, J.: Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J. Mater. Chem. A. 2, 11753 (2014).CrossRefGoogle Scholar
Dai, J-T., Zhang, Y., Li, H-C., Deng, Y-H., Elzatahry, A.A., Alghamdi, A., Fu, D-L., Jiang, Y-J., and Zhao, D-Y.: Enhancement of gemcitabine against pancreatic cancer by loading in mesoporous silica vesicles. Chin. Chem. Lett. 28, 531 (2017).CrossRefGoogle Scholar
Liu, Y., Wang, Z., Teng, W., Zhu, H., Wang, J., Elzatahry, A.A., Al-Dahyan, D., Li, W., Deng, Y., and Zhao, D.: A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. J. Mater. Chem. A. 6, 3162 (2018).CrossRefGoogle Scholar
Wu, Z-S., Feng, X., and Cheng, H-M.: Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 1, 277 (2014).CrossRefGoogle Scholar
Wang, Y., Zhang, C., Kang, S., Li, B., Wang, Y., Wang, L., and Li, X.: Simple synthesis of graphitic ordered mesoporous carbon supports using natural seed fat. J. Mater. Chem. 21, 14420 (2011).CrossRefGoogle Scholar
Dong, Y., Wu, Z-S., Ren, W., Cheng, H-M., and Bao, X.: Graphene: A promising 2D material for electrochemical energy storage. Sci. Bull. 62, 724 (2017).CrossRefGoogle Scholar
Zheng, S., Wu, Z-S., Wang, S., Xiao, H., Zhou, F., Sun, C., Bao, X., and Cheng, H-M.: Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater. 6, 70 (2017).CrossRefGoogle Scholar
Wang, Y., Li, B., Zhang, C., Song, X., Tao, H., Kang, S., and Li, X.: A simple solid–liquid grinding/templating route for the synthesis of magnetic iron/graphitic mesoporous carbon composites. Carbon 51, 397 (2013).CrossRefGoogle Scholar
Zhou, X., Cheng, X., Zhu, Y., Elzatahry, A.A., Alghamdi, A., Deng, Y., and Zhao, D.: Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 29, 405 (2018).CrossRefGoogle Scholar
Xiao, H., Wu, Z.S., Chen, L., Zhou, F., Zheng, S., Ren, W., Cheng, H.M., and Bao, X.: One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11, 7284 (2017).CrossRefGoogle ScholarPubMed
Wang, Y., Li, B., Zhang, C., Tao, H., Kang, S., Jiang, S., and Li, X.: Simple synthesis of metallic Sn nanocrystals embedded in graphitic ordered mesoporous carbon walls as superior anode materials for lithium ion batteries. J. Power Sources 219, 89 (2012).CrossRefGoogle Scholar
Yue, W. and Zong, W.: Synthesis of porous single crystals of metal oxides via a solid–liquid route. Chem. Mater. 19, 2359 (2007).CrossRefGoogle Scholar
Jiang, Q., Wu, Z.Y., Wang, Y.M., Cao, Y., Zhou, C.F., and Zhu, J.H.: Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mater. Chem. 16, 1536 (2006).CrossRefGoogle Scholar
Qin, J., Zhou, F., Xiao, H., Ren, R., and Wu, Z-S.: Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 61, 233 (2017).CrossRefGoogle Scholar
Matter, P., Zhang, L., and Ozkan, U.: The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 239, 83 (2006).CrossRefGoogle Scholar
Deng, Y., Xie, Y., Zou, K., and Ji, X.: Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors. J. Mater. Chem. A 4, 1144 (2016).CrossRefGoogle Scholar
Wu, R., Qian, X., Rui, X., Liu, H., Yadian, B., Zhou, K., Wei, J., Yan, Q., Feng, X.Q., Long, Y., Wang, L., and Huang, Y.: Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10, 1932 (2014).CrossRefGoogle Scholar
Katsenis, A.D., Puskaric, A., Strukil, V., Mottillo, C., Julien, P.A., Uzarevic, K., Pham, M.H., Do, T.O., Kimber, S.A., Lazic, P., Magdysyuk, O., Dinnebier, R.E., Halasz, I., and Friscic, T.: In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015).CrossRefGoogle ScholarPubMed
Wei, F., Jiang, J., Yu, G., and Sui, Y.: A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Mater. Lett. 146, 20 (2015).CrossRefGoogle Scholar
Chen, A., Yu, Y., Wang, R., Yu, Y., Zang, W., Tang, P., and Ma, D.: Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale 7, 14684 (2015).CrossRefGoogle ScholarPubMed
Katiyar, A., Yadav, S., Smirniotis, P.G., and Pinto, N.G.: Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A 1122, 13 (2006).CrossRefGoogle ScholarPubMed
Wang, Y.M., Wu, Z.Y., Shi, L.Y., and Zhu, J.H.: Rapid functionalization of mesoporous materials: Directly dispersing metal oxides into as-prepared SBA-15 occluded with template. Adv. Mater. 17, 323 (2005).CrossRefGoogle Scholar
Zhang, D., Shi, H., Zhang, R., Zhang, Z., Wang, N., Li, J., Yuan, B., Bai, H., and Zhang, J.: Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 5, 58772 (2015).CrossRefGoogle Scholar
Lin, K.Y. and Chang, H.A.: Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere 139, 624 (2015).CrossRefGoogle ScholarPubMed
Li, X., Gao, X., Ai, L., and Jiang, J.: Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem. Eng. J. 274, 238 (2015).CrossRefGoogle Scholar
Lin, K-Y.A. and Chang, H-A.: Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of rhodamine B in water. J. Taiwan Inst. Chem. Eng. 53, 40 (2015).CrossRefGoogle Scholar
Andrew Lin, K-Y. and Lee, W-D.: Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole. Chem. Eng. J. 284, 1017 (2016).CrossRefGoogle Scholar
Park, Y., Shin, W.S., and Choi, S-J.: Ammonium salt of heteropoly acid immobilized on mesoporous silica (SBA-15): An efficient ion exchanger for cesium ion. Chem. Eng. J. 220, 204 (2013).CrossRefGoogle Scholar
Chen, A., Yu, Y., Li, Y., Li, Y., and Jia, M.: Solid-state grinding synthesis of ordered mesoporous MgO/carbon spheres composites for CO2 capture. Mater. Lett. 164, 520 (2016).CrossRefGoogle Scholar
Wu, R., Wang, D.P., Han, J., Liu, H., Zhou, K., Huang, Y., Xu, R., Wei, J., Chen, X., and Chen, Z.: A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks. Nanoscale 7, 965 (2015).CrossRefGoogle ScholarPubMed
Long, C., Jiang, L., Wu, X., Jiang, Y., Yang, D., Wang, C., Wei, T., and Fan, Z.: Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93, 412 (2015).CrossRefGoogle Scholar
Qian, J., Sun, F., and Qin, L.: Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82, 220 (2012).CrossRefGoogle Scholar
Yang, J., Zhang, F., Lu, H., Hong, X., Jiang, H., Wu, Y., and Li, Y.: Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 54, 10889 (2015).CrossRefGoogle ScholarPubMed
Sun, Q., Li, W.C., and Lu, A.H.: Insight into structure-dependent self-activation mechanism in a confined nanospace of core–shell nanocomposites. Small 9, 2086 (2013).CrossRefGoogle Scholar
Bazzi, K., Dhindsa, K.S., Dixit, A., Sahana, M.B., Sudakar, C., Nazri, M., Zhou, Z., Vaishnava, P., Naik, V.M., Nazri, G.A., and Naik, R.: Nanostructured high specific capacity C-LiFePO4 cathode material for lithium-ion batteries. J. Mater. Res. 27, 424 (2011).CrossRefGoogle Scholar
Yan, Y., Cheng, Q., Wang, G., and Li, C.: Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J. Power Sources 196, 7835 (2011).CrossRefGoogle Scholar
Hou, Y., Wen, Z., Cui, S., Ci, S., Mao, S., and Chen, J.: An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25, 872 (2015).CrossRefGoogle Scholar
Zhao, X., Zhang, Q., Chen, C-M., Zhang, B., Reiche, S., Wang, A., Zhang, T., Schlögl, R., and Sheng Su, D.: Aromatic sulfide, sulfoxide, and sulfone mediated mesoporous carbon monolith for use in supercapacitor. Nano Energy 1, 624 (2012).CrossRefGoogle Scholar
Wang, Q., Yan, J., Wei, T., Feng, J., Ren, Y., Fan, Z., Zhang, M., and Jing, X.: Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60, 481 (2013).CrossRefGoogle Scholar
Nasini, U.B., Bairi, V.G., Ramasahayam, S.K., Bourdo, S.E., Viswanathan, T., and Shaikh, A.U.: Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. J. Power Sources 250, 257 (2014).CrossRefGoogle Scholar
Huang, C-W., Hsu, C-H., Kuo, P-L., Hsieh, C-T., and Teng, H.: Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 49, 895 (2011).CrossRefGoogle Scholar
Jiang, H.L., Liu, B., Lan, Y.Q., Kuratani, K., Akita, T., Shioyama, H., Zong, F., and Xu, Q.: From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854 (2011).CrossRefGoogle Scholar
Ye, G., Zhu, X., Chen, S., Li, D., Yin, Y., Lu, Y., Komarneni, S., and Yang, D.: Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. J. Mater. Chem. A. 5, 8247 (2017).CrossRefGoogle Scholar
Li, O.L., Chiba, S., Wada, Y., Panomsuwan, G., and Ishizaki, T.: Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 5, 2073 (2017).CrossRefGoogle Scholar
Tian, W., Zhang, H., Sun, H., Tadé, M.O., and Wang, S.: Template-free synthesis of N-doped carbon with pillared-layered pores as bifunctional materials for supercapacitor and environmental applications. Carbon 118, 98 (2017).CrossRefGoogle Scholar
Jiang, H., Lee, P.S., and Li, C.: 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6, 41 (2013).CrossRefGoogle Scholar
Kim, B-H., Yang, K.S., and Ferraris, J.P.: Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim. Acta 75, 325 (2012).CrossRefGoogle Scholar
Chaikittisilp, W., Hu, M., Wang, H., Huang, H.S., Fujita, T., Wu, K.C., Chen, L.C., Yamauchi, Y., and Ariga, K.: Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259 (2012).CrossRefGoogle ScholarPubMed
Cheng, P., Li, T., Yu, H., Zhi, L., Liu, Z., and Lei, Z.: Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J. Phys. Chem. C 120, 2079 (2016).CrossRefGoogle Scholar
Jiang, H., Li, C., Sun, T., and Ma, J.: A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 4, 807 (2012).CrossRefGoogle Scholar
Xiong, W., Liu, M., Gan, L., Lv, Y., Li, Y., Yang, L., Xu, Z., Hao, Z., Liu, H., and Chen, L.: A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. J. Power Sources 196, 10461 (2011).CrossRefGoogle Scholar
Li, Q., Jiang, R., Dou, Y., Wu, Z., Huang, T., Feng, D., Yang, J., Yu, A., and Zhao, D.: Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49, 1248 (2011).CrossRefGoogle Scholar
Bhattacharjya, D., Kim, M-S., Bae, T-S., and Yu, J-S.: High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799 (2013).CrossRefGoogle Scholar
Zhou, D-D., Li, W-Y., Dong, X-L., Wang, Y-G., Wang, C-X., and Xia, Y-Y.: A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. J. Mater. Chem. A. 1, 8488 (2013).CrossRefGoogle Scholar
Jiang, H., Yang, L., Li, C., Yan, C., Lee, P.S., and Ma, J.: High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 4, 1813 (2011).CrossRefGoogle Scholar
Seredych, M. and Bandosz, T.J.: S-doped micro/mesoporous carbon–graphene composites as efficient supercapacitors in alkaline media. J. Mater. Chem. A. 1, 11717 (2013).CrossRefGoogle Scholar
Lv, Y., Zhang, F., Dou, Y., Zhai, Y., Wang, J., Liu, H., Xia, Y., Tu, B., and Zhao, D.: A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J. Mater. Chem. 22, 93 (2012).CrossRefGoogle Scholar
Lei, Z., Christov, N., Zhang, L.L., and Zhao, X.S.: Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J. Mater. Chem. 21, 2274 (2011).CrossRefGoogle Scholar
Li, M. and Xue, J.: Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J. Phys. Chem. C 118, 2507 (2014).CrossRefGoogle Scholar
Sun, L., Tian, C., Li, M., Meng, X., Wang, L., Wang, R., Yin, J., and Fu, H.: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A. 1, 6462 (2013).CrossRefGoogle Scholar
Zhi, J., Zhao, W., Liu, X., Chen, A., Liu, Z., and Huang, F.: Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv. Funct. Mater. 24, 2013 (2014).CrossRefGoogle Scholar
Cai, J.J., Kong, L.B., Zhang, J., Luo, Y.C., and Kang, L.: A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor. Chin. Chem. Lett. 21, 1509 (2010).CrossRefGoogle Scholar
Wang, Y-Y., Hou, B-H., , H-Y., Wan, F., Wang, J., and Wu, X-L.: Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Adv. 5, 97427 (2015).CrossRefGoogle Scholar
Deng, J., Xiong, T., Xu, F., Li, M., Han, C., Gong, Y., Wang, H., and Wang, Y.: Inspired by bread leavening: One-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053 (2015).CrossRefGoogle Scholar
Zhou, L., Cao, H., Zhu, S., Hou, L., and Yuan, C.: Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 17, 2373 (2015).CrossRefGoogle Scholar
Supplementary material: File

Du et al. supplementary material

Du et al. supplementary material 1

Download Du et al. supplementary material(File)
File 2.1 MB