Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T13:34:34.386Z Has data issue: false hasContentIssue false

Nanostructured Nd0.45Sr0.55MnO3 films grown on SrTiO3(110)

Published online by Cambridge University Press:  17 January 2013

Yunlong Tang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Yinlian Zhu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Yuqin Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Zhidong Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Xiuliang Ma
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To explore the relationships between microstructure and growth direction, metallic A-type antiferromagnetic and anisotropic magnetoresistant Nd0.45Sr0.55MnO3 (NSMO) thin films were grown on SrTiO3(110) by pulsed laser deposition method and characterized by (scanning) transmission electron microscopy. The interface between NSMO and SrTiO3 (110) is flat and sharp. The NSMO thin films exhibit a two-layered structure: a continuous perovskite layer epitaxially grown on the substrate followed by an epitaxially grown columnar nanostructure [Fig. 1(a)]. High-density stacking faults were found in the nanostructured layer with an in-plane translational displacement of 1/2a<111>, accompanied by 1/2a[001] partial dislocations or (110) antiphase boundaries (APBs). These stacking faults terminate either at pores or in the grain matrix to eliminate (1$\bar 1$0) APBs. The formation mechanisms of the nanostructured NSMO films and the relevant stacking faults are discussed from the viewpoint of both film growth and specific substrate direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chakhalian, J., Millis, A.J., and Rondinelli, J.: Whither the oxide interface. Nat. Mater. 11, 92 (2012).CrossRefGoogle ScholarPubMed
Rüegg, A. and Fiete, G.A.: Topological insulators from complex orbital order in transition-metal oxides heterostructures. Phys. Rev. B 84, 201103 (2011).CrossRefGoogle Scholar
Bachelet, R., Pesquera, D., Herranz, G., Sánchez, F., and Fontcuberta, J.: Persistent two-dimensional growth of (110) manganite films. Appl. Phys. Lett. 97, 121904 (2010).CrossRefGoogle Scholar
Infante, I.C., Sánchez, F., Fontcuberta, J., Wojcik, M., Jedryka, E., Estradé, S., Peiró, F., Arbiol, J., Laukhin, V., and Espinós, J.P.: Elastic and orbital effects on thickness-dependent properties of manganite thin films. Phys. Rev. B 76, 224415 (2007).CrossRefGoogle Scholar
Tebano, A., Orsini, A., Castro, D.D., Medaglia, P.G., and Balestrino, G.: Interplay between crystallographic orientation and electric transport properties in La2/3Sr1/3MnO3 films. Appl. Phys. Lett. 96, 092505 (2010).CrossRefGoogle Scholar
Zhang, Y.Q., Meng, H., Wang, X.W., Wang, X., Guo, H.H., Zhu, Y.L., Yang, T., and Zhang, Z.D.: Angular dependent magnetoresistance with twofold and fourfold symmetries in A-type antiferromagnetic Nd0.45Sr0.55MnO3 thin film. Appl. Phys. Lett. 97, 172502 (2010).CrossRefGoogle Scholar
Reyren, N., Thiel, S., Caviglia, A.D., Kourkoutis, L.F., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J-M., and Mannhart, J.: Superconducting interfaces between insulating oxides. Science 317, 1196 (2007).CrossRefGoogle ScholarPubMed
Nakagawa, N., Hwang, H.Y., and Muller, D.A.: Why some interfaces cannot be sharp. Nat. Mater. 5, 204 (2006).CrossRefGoogle Scholar
Yu, A.M., Heifets, E., Kotomin, E.A., and Maier, J.: Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. Surf. Sci. 603, 326 (2009).Google Scholar
Heifets, E., Goddard, W.A. III, Kotomin, E.A., Eglitis, R.I., and Borstel, G.: Ab initio calculations of the SrTiO3 (110) polar surface. Phys. Rev. B 69, 035408 (2004).CrossRefGoogle Scholar
Enterkin, J.A., Subramanian, A.K., Russell, B.C., Castell, M.R., Poeppelmeier, K.R., and Marks, L.D.: A homologous series of structures on the surface of SrTiO3 (110). Nat. Mater. 9, 245 (2010).CrossRefGoogle ScholarPubMed
Russell, B.C. and Castell, M.R.: Reconstructions on the polar SrTiO3(110) surface: Analysis using STM, LEED, and AES. Phys. Rev. B 77, 245414 (2008).CrossRefGoogle Scholar
Lai, K., Nakamura, M., Kundhikanjana, W., Kawasaki, M., Tokura, Y., Kelly, M.A., and Shen, Z-X.: Mesoscopic percolating resistance network in a strained manganite thin film. Science 329, 190 (2010).CrossRefGoogle Scholar
Nakamura, M., Ogimoto, Y., Tamaru, H., Izumi, M., and Miyano, K.: Phase control through anisotropic strain in Nd0.5Sr0.5MnO3 thin films. Appl. Phys. Lett. 86, 182504 (2005).CrossRefGoogle Scholar
Wakabayashi, Y., Bizen, D., Nakao, H., Murakami, Y., Nakamura, M., Ogimoto, Y., Miyano, K., and Sawa, H.: Novel orbital ordering induced by anisotropic stress in a manganite thin film. Phys. Rev. Lett. 96, 017202 (2006).CrossRefGoogle Scholar
Infante, I.C., Ossó, J.O., Sánchez, F., and Fontcuberta, J.: Tuning in-plane magnetic anisotropy in (110) La2/3Ca1/3MnO3 films by anisotropic strain relaxation. Appl. Phys. Lett. 92, 012508 (2008).CrossRefGoogle Scholar
Ogimoto, Y., Nakamura, M., Takubo, N., Tamaru, H., Izumi, M., and Miyano, K.: Strain-induced crossover of the metal-insulator transition in perovskite manganites. Phys. Rev. B 71, 060403 (2005).CrossRefGoogle Scholar
Wang, X., Zhu, Y.L., He, M., Lu, H.B., and Ma, X.L.: Structural and microstructural analyses of crystalline Er2O3 high-k films grown on Si (001) by laser molecular beam epitaxy. Acta Mater. 59, 1644 (2011).CrossRefGoogle Scholar
Zhu, Y.L., Wang, X., Zhuo, M.J., Zhang, Y.Q., and Ma, X.L.: Dislocations in charge-ordered Pr0.5Ca0.5MnO3 epitaxial thin films prepared by a two-step growth technique. Philos. Mag. Lett. 90, 323 (2010).CrossRefGoogle Scholar
Zhu, Y.L., Zheng, S.J., Ma, X.L., Feigl, L., Alexe, M., Hesse, D., and Vrejoiu, I.: Microstructural evolution of [PbZrxTi1–xO3/PbZryTi1–yO3]n epitaxial multilayers (x/y=0.2/0.4, 0.4/0.6)–dependence on layer thickness. Philos. Mag. 90, 1359 (2010).CrossRefGoogle Scholar
Tang, Y.L., Zhu, Y.L., Meng, H., Zhang, Y.Q., and Ma, X.L.: Misfit dislocations of anisotropic magnetoresistant Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (110) substrates. Acta Mater. 60, 5975 (2012).CrossRefGoogle Scholar
Meng, H., Zhang, Y.Q., Wang, X.W., Tang, Y.L., Wang, Z.H., Zhu, Y.L., Zheng, J-G., and Zhang, Z.D.: Control of magnetic and transport properties in Nd0.45Sr0.55MnO3 films through epitaxial strain. J. Appl. Phys. 111, 07D706 (2012).CrossRefGoogle Scholar
Kawano, H., Kajimoto, R., Yoshizawa, H., Tomioka, Y., Kuwahara, H., and Tokura, Y.: Magnetic ordering and relation to the metal-insulator transition in Pr1−xSrxMnO3 and Nd1−xSrxMnO3 with x ∼ 1/2. Phys. Rev. Lett. 78, 4253 (1997).CrossRefGoogle Scholar
Yoshizawa, H., Kawano, H., Fernandez-Baca, J.A., Kuwahara, H., and Tokura, Y.: Anisotropic spin waves in a metallic antiferromagnet Nd0.45Sr0.55MnO3. Phys. Rev. B 58, R571 (1998).CrossRefGoogle Scholar
Kajimoto, R., Yoshizawa, H., Kawano, H., Kuwahara, H., Tokura, Y., Ohoyama, K., and Ohashi, M.: Hole-concentration-induced transformation of the magnetic and orbital structures in Nd1−xSrxMnO3. Phys. Rev. B 60, 9506 (1999).CrossRefGoogle Scholar
Zheng, S.J. and Ma, X.L.: Asymmetrical twin boundaries and highly dense antiphase domains in BaNb0.3Ti0.7O3 thin films. Philos. Mag. 87, 4421 (2007).CrossRefGoogle Scholar
Suzuki, T., Nishi, Y., and Fujimoto, M.: Ruddlesden–Popper planar faults and nanotwins in heteroepitaxial nonstoichiometric barium titanate thin films. J. Am. Ceram. Soc. 83, 3185 (2000).CrossRefGoogle Scholar
Mi, S.B., Jia, C.L., Faley, M.I., Poppe, U., and Urban, K.: High-resolution electron microscopy of microstructure of SrTiO3/BaZrO3 bilayer thin films on MgO substrates. J. Cryst. Growth 300, 478 (2007).CrossRefGoogle Scholar
Ruddlesden, S.N. and Propper, P.: New compounds of the K2NiF4 type. Acta Crystallogr. 10, 538 (1957).CrossRefGoogle Scholar
Jia, C.L., Houben, L., Thust, A., and Barthel, J.: On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy 110, 500 (2010).CrossRefGoogle Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K., and Urban, K.: High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233 (2002).CrossRefGoogle ScholarPubMed
Pennycook, S.J.: Z-contrast transmission electron microscopy: Direct atomic imaging of materials. Annu. Rev. Mater. Sci. 22, 171 (1992).CrossRefGoogle Scholar
McGibbon, M.M., Browning, N.D., Chisholm, M.F., McGibbon, A.J., Pennycook, S.J., Ravikumar, V., and Dravid, V.P.: Direct determination of grain boundary atomic structure in SrTiO3. Science 266, 102 (1994).CrossRefGoogle ScholarPubMed
Martin, L.W., Chu, Y-H., and Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng., R 68, 89 (2010).CrossRefGoogle Scholar
Vrejoiu, I., Rhun, G.L., Pintilie, L., Hesse, D., Alexe, M., and Gösele, U.: Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer–by–layer grown, defect–free single–crystalline films. Adv. Mater. 18, 1657 (2006).CrossRefGoogle Scholar
Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H.: Atomic control of the SrTiO3 crystal surface. Science 266, 15401542 (1994).CrossRefGoogle ScholarPubMed