Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:01:27.176Z Has data issue: false hasContentIssue false

Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation

Published online by Cambridge University Press:  03 March 2011

B. C. Larson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. Z. Tischler
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. M. Mills
Affiliation:
CHESS and School of Applied & Engineering Physics, Cornell University, Ithaca, New York 14853
Get access

Abstract

We have used the pulsed time structure of the Cornell High-Energy Synchrotron Source (CHESS) to carry out a nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation. Time-resolved temperature distributions and interfacial overheating and undercooling were measured on 〈111〉 and 〈100〉 silicon during 25 ns UV laser pulses through the analysis of thermal expansion induced strain. The temperature gradients were found to be > 107 K/cm at the liquid-solid interface and the temperature distributions have been shown to be in agreement with numerical heat flow calculations for these laser conditions. The combined overheating and undercooling (during ∼ 10 m/s melting and ∼ 6 m/s regrowth) was measured to be 110 ± 30 K on 〈111〉 oriented silicon and 50 ± 25 K on 〈100〉 silicon. These values have been interpreted in terms of velocity coefficients of overheating and undercooling.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1White, C. W., Pronko, P. P., Wilson, S. R., Appleton, B. R., Narayan, J., and Young, R. T., J. Appl. Phys. 50, 3261 (1979).CrossRefGoogle Scholar
2White, C. W., Wilson, S. R., Appleton, B. R., and Young, F. W. Jr., J. Appl. Phys. 51, 738 (1980).CrossRefGoogle Scholar
3Baeri, P., Foti, G., Poate, J. M., Campisano, S. U., and Cullis, A. G., Appl. Phys. Lett. 38, 800 (1981).CrossRefGoogle Scholar
4Brown, W. L., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Fan, J. C. C. and Johnson, N. M. (North-Holland, New York, 1984), p. 9.Google Scholar
5Cahn, J. W., Coriell, S. R., and Boettinger, W. L., in Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S. (Academic, New York, 1980), p. 89.CrossRefGoogle Scholar
6Aziz, M. J., J. Appl. Phys. 53, 1158 (1982).CrossRefGoogle Scholar
7Jackson, K. A., Gilmer, G. H., and Leamy, H. J., in Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S. (Academic, New York, 1980), p. 104.CrossRefGoogle Scholar
8Wood, R. F., Phys. Rev. B 25, 2786 (1982).CrossRefGoogle Scholar
9Gilmer, G. H., in Laser and Electron Beam Interactions with Solids, edited by Appleton, B. R. and Cellar, G. K. (North-Holland, New York, 1982), p. 249.Google Scholar
10Cullis, A. G., Chen, N. G., Webber, H. C., and Smith, D. J., J. Cryst. Growth 68, 624 (1984).CrossRefGoogle Scholar
11Liu, J. M., Yen, R., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 39, 755 (1981).CrossRefGoogle Scholar
12Larson, B. C. and Barhorst, J. F., J. Appl. Phys. 51, 3181 (1980).CrossRefGoogle Scholar
13Fukahara, A. and Takano, Y., Acta Crystallog. A 33, 13 (1977).Google Scholar
14Burgeat, J. and Taupin, D., Acta Crystallog. A 24, 99 (1968).CrossRefGoogle Scholar
15Klar, B. and Rustichelli, F., Nuovo Cimento B 13, 249 (1973).CrossRefGoogle Scholar
16International Tables for X-ray Crystallography, edited by Lonsdale, K. (The Kynoch Press, Birmingham, England, 1962), p. 233.Google Scholar
17Baeri, P., in Ref. 9, p. 151.Google Scholar
18Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processmg-1978, edited by Ferris, S. D., Leamy, H. J., and Poate, J. M. (American Institute of Physics, New York, 1979), p. 73.Google Scholar
19Larson, B. C., White, C. W., Noggle, T. S., and Mills, D. M., Phys. Rev. Lett. 48, 337 (1982).CrossRefGoogle Scholar
20Mills, D. M., Larson, B. C., White, C. W., and Noggle, T. S., Nucl. Instrum. Methods Res. 208, 511 (1983).CrossRefGoogle Scholar
21Larson, B. C., White, C. W., Noggle, T. S., Barhorst, J. F., and Mills, D. M., Appl. Phys. Lett. 42, 282 (1983).CrossRefGoogle Scholar
22Thompson, M. O., Bucksbaum, P. H., and Bokor, J., in Energy Beam-Solid Interactions and Transient Thermal Processing 1984, edited by Biegelson, D. K., Rozgonyi, G. A., and Shank, C. V. (Materials Research Society, Pittsburgh, PA, 1985), p. 181.Google Scholar
23Thermophysical Properties of Matter, edited by Touloukian, Y. S., Powell, R. W., Ho, C. Y., Buyco, E. H., and Klemens, P. G. (IFI/Plenum, New York, 1970), Thermal Conductivity—Vol. I, p. 326; Specific Heat—Vol. IV, p. 204; Thermal Expansion—Vol. XII, p. 154.Google Scholar
24Ezz-El-Arab, M.-A., Ann. Phys. (Paris) 7, 143 (1972).Google Scholar
25Larson, B. C., Tischler, J. Z., and Mills, D. M., in Ref. 22, p. 187.Google Scholar
26Burenkov, Y. A. and Nikanorov, S. P., Sov. Phys. Solid State 16, 963 (1974).Google Scholar
27Warren, B., in X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), p. 31.Google Scholar
28Meiling, G. S. and Uhlmann, D. R., Phys. Chem. Glasses 8, 62 (1967).Google Scholar
29Aziz, M. J., Nygren, E., Hays, J. F., and Turnbull, D., J. Appl. Phys. 57, 2233 (1985).CrossRefGoogle Scholar
30Galvin, G. J., Mayer, J. W., and Peercy, P. W., Appl. Phys. Lett. 46, 644 (1985); Peercy, P. S. and Thompson, M. O., in Ref. 22, p. 54.CrossRefGoogle Scholar
31Bucksbaum, P. H. and Bokor, J., Phys. Rev. Lett. 53, 182 (1984).CrossRefGoogle Scholar
32Williamson, S. W., Mourou, G., and Li, J. C. M., in Ref. 22, p. 87.Google Scholar