Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T01:30:44.392Z Has data issue: false hasContentIssue false

Nanoporous metal–polymer composite membranes for organics separations and catalysis

Published online by Cambridge University Press:  20 August 2020

Michael J. Detisch
Affiliation:
Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506, USA
Thomas John Balk
Affiliation:
Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506, USA
Mariah Bezold
Affiliation:
Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506, USA
Dibakar Bhattacharyya*
Affiliation:
Department of Chemical & Materials Engineering, University of Kentucky, Lexington, Kentucky40506, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Metallic thin-film composite membranes are produced by sputtering metal films onto commercial polymer membranes. The separations capability of the membrane substrate is enhanced with the addition of a 10 nm Ta film. The addition of a tantalum layer decreases the molecular weight cutoff of the membrane from 70 kDa dextran (19 nm) to below 5 kDa (6 nm). Water flux drops from 168 LMH/bar (LMH: liters/meters2/hour) (polymer support) to 8.8 LMH/bar (Ta composite). A nanoporous layer is also added to the surface through Mg/Pd film deposition and dealloying. The resulting nanoporous Pd is a promising catalyst with a ligament size of 4.1 ± 0.9 nm. The composite membrane's ability to treat water contaminated with chlorinated organic compounds (COCs) is determined. When pressurized with hydrogen gas, the nanoporous Pd composite removes over 70% of PCB-1, a model COC, with one pass. These nanostructured films can be incorporated onto membrane supports enabling diverse reactions and separations.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lau, W.J., Ismail, A.F., Misdan, N., and Kassim, M.A.: A recent progress in thin film composite membrane: A review. Desalination 287, 190 (2012).CrossRefGoogle Scholar
Schwinge, J., Neal, P.R., Wiley, D.E., Fletcher, D.F., and Fane, A.G.: Spiral wound modules and spacers: Review and analysis. J. Membr. Sci. 242, 129 (2004).CrossRefGoogle Scholar
Fane, A.G., Wang, R., and Hu, M.X.: Synthetic membranes for water purification: Status and future. Angew. Chem. Int. Ed. 54, 3368 (2015).CrossRefGoogle Scholar
Werber, J.R., Osuji, C.O., and Elimelech, M.: Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).CrossRefGoogle Scholar
Lalia, B.S., Kochkodan, V., Hashaikeh, R., and Hilal, N.: A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326, 77 (2013).CrossRefGoogle Scholar
Cadotte, J.E.: Interfacially synthesized reverse osmosis membrane. USA patent 4,277,344 (1981)Google Scholar
Warsinger, D.M., Chakraborty, S., Tow, E.W., Plumlee, M.H., Bellona, C., Loutatidou, S., Karimi, L., Mikelonis, A.M., Achilli, A., Ghassemi, A., Padhye, L.P., Snyder, S.A., Curcio, S., Vecitis, C.D., Arafat, H.A., and Lienhard, J.H.: A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 81, 209 (2018).CrossRefGoogle Scholar
Marchetti, P., Jimenez Solomon, M.F., Szekely, G., and Livingston, A.G.: Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 114, 10735 (2014).CrossRefGoogle ScholarPubMed
Zhu, B., Duke, M., Dumée, L., Merenda, A., Des Ligneris, E., Kong, L., Hodgson, P., and Gray, S.: Short review on porous metal membranes – fabrication, commercial products, and applications. Membranes 8, 83 (2018).CrossRefGoogle ScholarPubMed
Kim, J.-O., Jung, J.-T., and Chung, J.: Treatment performance of metal membrane microfiltration and electrodialysis integrated system for wastewater reclamation. Desalination 202, 343 (2007).CrossRefGoogle Scholar
Dumee, L.F., He, L., Lin, B., Ailloux, F.-M., Lemoine, J.-B., Velleman, L., She, F., Duke, M.C., Orbell, J.D., Erskine, G., Hodgson, P.D., Gray, S., and Kong, L.: The fabrication and surface functionalization of porous metal frameworks – a review. J. Mater. Chem. A 1, 15185 (2013).CrossRefGoogle Scholar
Wang, H., Hu, X., Ke, Z., Du, C.Z., Zheng, L., Wang, C., and Yuan, Z.: Review: Porous metal filters and membranes for oil–water separation. Nanoscale Res. Lett. 13, 284 (2018).CrossRefGoogle ScholarPubMed
Greene, J.E.: Review article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol., A 35, 05C204 (2017).CrossRefGoogle Scholar
Kukla, R.: Magnetron sputtering on large scale substrates: An overview on the state of the art. Surf. Coat. Technol. 93, 1 (1997).CrossRefGoogle Scholar
Ludwig, R., Kukla, R., and Josephson, E.: Vacuum web coating – state of the art and potential for electronics. Proc. IEEE 93, 1483 (2005).CrossRefGoogle Scholar
Kittler, W. and Ritchie, I.: Continuous coating of indium tin oxide onto large area flexible substrates. Proc. SPIE 325, 61 (1982).CrossRefGoogle Scholar
Detisch, M.J., Balk, T.J., and Bhattacharyya, D.: Synthesis of catalytic nanoporous metallic thin films on polymer membranes. Ind. Eng. Chem. Res. 57, 4420 (2018).CrossRefGoogle ScholarPubMed
Nana, L., Yuanjing, F., Qingchen, L., and Changfa, X.: Microstructure and performance of a porous polymer membrane with a copper nano-layer using vapor-induced phase separation combined with magnetron sputtering. Polymers 9, 524 (2017).Google Scholar
Lim, J.-E., Yoon, S., Hwang, B.-U., Lee, N.-E., and Kim, H.-K.: Self-connected Ag nanoporous sponge embedded in sputtered polytetrafluoroethylene for highly stretchable and semi-transparent electrodes. Adv. Mater. Interfaces 6, 1801936 (2019).CrossRefGoogle Scholar
Erlebacher, J.: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc 151, 10 (2004).Google Scholar
Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).CrossRefGoogle ScholarPubMed
Ding, Y., Kim, Y.J., and Erlebacher, J.: Nanoporous gold leaf: “Ancient technology”/Advanced material. Adv. Mater. 16, 1897 (2004).CrossRefGoogle Scholar
Wang, L., Briot, N., Swartzentruber, P., and Balk, T.J.: Magnesium alloy precursor thin films for efficient, practical fabrication of nanoporous metals. Metall. Mater. Trans. A 45, 1 (2014).CrossRefGoogle Scholar
McCue, I., Benn, E., Gaskey, B., and Erlebacher, J.: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).CrossRefGoogle Scholar
Cook, J.B., Detsi, E., Liu, Y., Liang, Y.-L., Kim, H.-S., Petrissans, X., Dunn, B., and Tolbert, S.H.: Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-Ion battery anode. ACS Appl. Mater. Interfaces 9, 293 (2017).CrossRefGoogle ScholarPubMed
Zhang, Z., Wang, Y., Qi, Z., Zhang, W., Qin, J., and Frenzel, J.: Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C 113, 12629 (2009).CrossRefGoogle Scholar
Şeker, E., Shih, W.-C., and Stine, K.J.: Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bull. 43, 49 (2018).CrossRefGoogle ScholarPubMed
Hwang, C.K., Kim, J.M., Hwang, S., Kim, J.H., Sung, C.H., Moon, B.M., Chae, K.H., Singh, J.P., Kim, S.H., Jang, S.S., Lee, S.W., Ham, H.C., Han, S., and Kim, J.Y.: Porous strained Pt nanostructured thin-film electrocatalysts via dealloying for PEM fuel cells. Adv. Mater. Interfaces 7, 1901326 (2019).CrossRefGoogle Scholar
Wang, J., Wang, Z., Zhao, D., and Xu, C.: Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal. Chim. Acta 832, 34 (2014).CrossRefGoogle ScholarPubMed
Li, W.-C. and Balk, T.J.: Preparation and hydrogen absorption/desorption of nanoporous palladium thin films. Materials 2, 2496 (2009).CrossRefGoogle Scholar
Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., and Chen, M.: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).CrossRefGoogle ScholarPubMed
Fujita, T., Higuchi, K., Yamamoto, Y., Tokunaga, T., Arai, S., and Abe, H.: In-situ TEM study of a nanoporous Ni–Co catalyst used for the dry reforming of methane. Metals 7, 406 (2017).CrossRefGoogle Scholar
Ding, Y. and Chen, M.: Nanoporous metals for catalytic and optical applications. MRS Bull. 34, 569 (2009).CrossRefGoogle Scholar
Wu, B.Z., Chen, H.Y., Wang, S.F.J., Wai, C.M., Liao, W.S., and Chiu, K.H.: Reductive dechlorination for remediation of polychlorinated biphenyls. Chemosphere 88, 757 (2012).CrossRefGoogle ScholarPubMed
Schüth, C. and Reinhard, M.: Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Appl. Catal. B 18, 215 (1998).CrossRefGoogle Scholar
Chaplin, B.P., Reinhard, M., Schneider, W.F., Schüth, C., Shapley, J.R., Strathmann, T.J., and Werth, C.J.: Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ. Sci. Technol. 46, 3655 (2012).CrossRefGoogle ScholarPubMed
Schüth, C., Disser, S., Schüth, F., and Reinhard, M.: Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Appl. Catal., B 28, 147 (2000).CrossRefGoogle Scholar
Lien, H.-L. and Zhang, W.-X.: Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Appl. Catal., B 77, 110 (2007).CrossRefGoogle Scholar
Zhu, B.-W. and Lim, T.-T.: Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration. Environ. Sci. Technol. 41, 7523 (2007).CrossRefGoogle ScholarPubMed
Grittini, C., Malcomson, M., Fernando, Q., and Korte, N.: Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ. Sci. Technol. 29, 2898 (1995).CrossRefGoogle ScholarPubMed
Lowry, G.V. and Reinhard, M.: Pd-catalyzed TCE dechlorination in groundwater: Solute effects, biological control, and oxidative catalyst regeneration. Environ. Sci. Technol. 34, 3217 (2000).CrossRefGoogle Scholar
Ohring, M.: Chapter 5 - Plasma and ion beam processing of thin films. In Materials Science of Thin Films, 2nd ed. Ohring, M., ed. (Academic Press, San Diego, 2002); p. 203.CrossRefGoogle Scholar
Chan, C.M., Ko, T.M., and Hiraoka, H.: Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 24, 3 (1996).CrossRefGoogle Scholar
Mauter, M.S., Wang, Y., Okemgbo, K.C., Osuji, C.O., Giannelis, E.P., and Elimelech, M.: Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces 3, 2861 (2011).CrossRefGoogle ScholarPubMed
Wang, J., Chen, X., Reis, R., Chen, Z., Milne, N., Winther-Jensen, B., Kong, L., and Dumée, L.: Plasma modification and synthesis of membrane materials – a mechanistic review. Membranes 8, 56 (2018).CrossRefGoogle ScholarPubMed
Wataha, J.C. and Hanks, C.T.: Biological effects of palladium and risk of using palladium in dental casting alloys. J. Oral. Rehabil. 23, 309 (1996).CrossRefGoogle ScholarPubMed
Joska, L., Marek, M., and Leitner, J.: The mechanism of corrosion of palladium–silver binary alloys in artificial saliva. Biomaterials 26, 1605 (2005).CrossRefGoogle ScholarPubMed
Smuleac, V., Bachas, L., and Bhattacharyya, D.: Aqueous phase synthesis of PAA in PVDF membrane pores for nanoparticle synthesis and dichlorobiphenyl degradation. J. Membr. Sci. 346, 310 (2010).CrossRefGoogle ScholarPubMed
Leandro, L., Malureanu, R., Rozlosnik, N., and Lavrinenko, A.: Ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers. ACS Appl. Mater. Interfaces 7, 5797 (2015).CrossRefGoogle ScholarPubMed
Devaraj, V., Lee, J., Baek, J., and Lee, D.: Fabrication of ultra-smooth 10 nm silver films without wetting layer. Appl. Sci. Converg. Technol. 25, 32 (2016).CrossRefGoogle Scholar
Yun, J.: Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27, 21 (2017).CrossRefGoogle Scholar
Ho, W. and Sirkar, K.: Membrane Handbook, Vol. 2 (Springer Science + Business Media, LLC, New York, 1992), pp. 953.CrossRefGoogle Scholar
Wickramasinghe, S.R., Bower, S.E., Chen, Z., Mukherjee, A., and Husson, S.M.: Relating the pore size distribution of ultrafiltration membranes to dextran rejection. J. Membr. Sci. 340, 1 (2009).CrossRefGoogle Scholar
Schultz, S.G. and Solomon, A.K.: Determination of the effective hydrodynamic radii of small molecules by viscometry. J. Gen. Physiol. 44, 1189 (1961).CrossRefGoogle ScholarPubMed
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399 (2015).CrossRefGoogle Scholar
Giannuzzi, L.A. and Stevie, F.A.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197 (1999).CrossRefGoogle Scholar
Supplementary material: File

Detisch et al. supplementary material

Detisch et al. supplementary material

Download Detisch et al. supplementary material(File)
File 2.3 MB