Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T13:20:07.476Z Has data issue: false hasContentIssue false

Nanomechanical studies of high-entropy alloys

Published online by Cambridge University Press:  04 June 2018

Yu Zou*
Affiliation:
Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the past decade, nanomechanical techniques have become ubiquitous for mechanical measurement concurrently with the discovery of high-entropy alloys (HEAs). Different from large-scale testing, small-scale measurements offer quantitative details about mechanical behavior of materials at the micro/nanoscale, presenting new opportunities to probe fundamental nature of HEAs. This article will review the literature on using versatile nanomechanical tools for HEA studies, including nanoindentation, microcompression, high-temperature deformation, fracture measurement, and in situ electron microscopy. With these approaches, many interesting phenomena and properties of HEAs have been unveiled, for example, properties about incipient plasticity, strain-rate sensitivity, creep, diffusion, size-dependent strength, and fracture, which are difficult, or impossible, to be measured in macroscopic experiments. Despite current literature only focusing on a few HEA compositions and several methods, as nanomechanics and HEAs are developing rapidly, a new avenue of research is to be exploited. The article concludes with perspectives about future directions in this field.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Mügge, O.: On slip and related phenomena in crystals. Neues Fahr. F. Miner. 7, 71 (1898).Google Scholar
Ewing, J.A. and Rosenhain, W.: Experiments in micro-metallurgy: Effects of strain. Preliminary notice. Proc. R. Soc. London 65, 85 (1899).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
Kraft, O., Gruber, P.A., Monig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).CrossRefGoogle Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).CrossRefGoogle Scholar
Gianola, D.S. and Eberl, C.: Micro- and nanoscale tensile testing of materials. JOM 61, 24 (2009).CrossRefGoogle Scholar
Wheeler, J.M. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84, 045103 (2013).CrossRefGoogle ScholarPubMed
Dehm, G., Jaya, B.N., Raghavan, R., and Kirchlechner, C.: Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales. Acta Mater. 142, 248 (2018).CrossRefGoogle Scholar
Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A.: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).CrossRefGoogle Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
Zou, Y. and Spolenak, R.: Size-dependent plasticity in micron- and submicron-sized ionic crystals. Philos. Mag. Lett. 93, 431 (2013).CrossRefGoogle Scholar
Michler, J., Wasmer, K., Meier, S., Ostlund, F., and Leifer, K.: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 043123 (2007).CrossRefGoogle Scholar
Korte, S. and Clegg, W.J.: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).CrossRefGoogle Scholar
Zou, Y., Kuczera, P., Sologubenko, A., Sumigawa, T., Kitamura, T., Steurer, W., and Spolenak, R.: Superior room-temperature ductility of typically brittle quasicrystals at small sizes. Nat. Commun. 7, 12261 (2016).CrossRefGoogle ScholarPubMed
Volkert, C., Donohue, A., and Spaepen, F.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 083539 (2008).CrossRefGoogle Scholar
Zhu, T. and Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55, 710 (2010).CrossRefGoogle Scholar
Li, J., Shan, Z., and Ma, E.: Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108 (2014).CrossRefGoogle Scholar
Zou, Y.: Materials selection in micro- or nano-mechanical design: Towards new Ashby plots for small-sized materials. Mater. Sci. Eng., A 680, 421 (2017).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Huang, P.K., Yeh, J.W., Shun, T.T., and Chen, S.K.: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74 (2004).CrossRefGoogle Scholar
Yeh, J.W., Chen, Y.L., Lin, S.J., and Chen, S.K.: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 1 (2007).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
Tsai, K-Y., Tsai, M-H., and Yeh, J-W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).CrossRefGoogle Scholar
Yao, M., Pradeep, K., Tasan, C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72, 5 (2014).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).CrossRefGoogle Scholar
Gao, M.C., Yeh, J-W., Liaw, P.K., and Zhang, Y.: High-entropy Alloys (Springer, Switzerland 2016).CrossRefGoogle Scholar
Senkov, O.N. and Woodward, C.F.: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng., A 529, 311 (2011).CrossRefGoogle Scholar
Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2014).CrossRefGoogle Scholar
Song, H., Tian, F., Hu, Q-M., Vitos, L., Wang, Y., Shen, J., and Chen, N.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).CrossRefGoogle Scholar
Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).CrossRefGoogle Scholar
Zou, Y., Okle, P., Yu, H., Sumigawa, T., Kitamura, T., Maiti, S., Steurer, W., and Spolenak, R.: Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scr. Mater. 128, 95 (2017).CrossRefGoogle Scholar
Xu, X.D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T.G., Liu, C.T., and Chen, M.W.: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 84, 145 (2015).CrossRefGoogle Scholar
Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).CrossRefGoogle Scholar
Ye, Y.X., Lu, Z.P., and Nieh, T.G.: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).CrossRefGoogle Scholar
Jiao, Z-M., Ma, S-G., Yuan, G-Z., Wang, Z-H., Yang, H-J., and Qiao, J-W.: Plastic deformation of Al0.3CoCrFeNi and AlCoCrFeNi high-entropy alloys under nanoindentation. J. Mater. Eng. Perform. 24, 3077 (2015).CrossRefGoogle Scholar
Wu, D., Jang, J.S.C., and Nieh, T.G.: Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics 68, 118 (2016).CrossRefGoogle Scholar
Mridha, S., Das, S., Aouadi, S., Mukherjee, S., and Mishra, R.S.: Nanomechanical behavior of CoCrFeMnNi high-entropy alloy. JOM 67, 2296 (2015).CrossRefGoogle Scholar
Lin, S-Y., Chang, S-Y., Chang, C-J., and Huang, Y-C.: Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr)NxSiy high-entropy coatings. Entropy 16, 405417 (2014).CrossRefGoogle Scholar
Bahr, D.F., Kramer, D., and Gerberich, W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
Suresh, S., Nieh, T-G., and Choi, B.: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999).CrossRefGoogle Scholar
Schuh, C., Mason, J., and Lund, A.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).CrossRefGoogle ScholarPubMed
Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).CrossRefGoogle Scholar
Mason, J., Lund, A., and Schuh, C.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).CrossRefGoogle Scholar
Koch, C.C.: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).CrossRefGoogle Scholar
Lee, D-H., Choi, I-C., Seok, M-Y., He, J., Lu, Z., Suh, J-Y., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).CrossRefGoogle Scholar
Lee, D-H., Seok, M-Y., Zhao, Y., Choi, I-C., He, J., Lu, Z., Suh, J-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).CrossRefGoogle Scholar
Lee, D-H., Lee, J-A., Zhao, Y., Lu, Z., Suh, J-Y., Kim, J-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis. Acta Mater. 140, 443 (2017).CrossRefGoogle Scholar
Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).CrossRefGoogle Scholar
Caillard, D. and Martin, J-L.: Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, U.K. 2003).Google Scholar
Messerschmidt, U.: Dislocation Dynamics during Plastic Deformation, Vol. 1; Springer Series in Materials Science, Vol. 129 (Springer-Verlag, Berlin Heidelberg, 2010). ISBN: 978-3-642-03176-2.CrossRefGoogle Scholar
Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation. J. Mater. Res. 32, 2658 (2017).CrossRefGoogle Scholar
Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des. 115, 479 (2017).CrossRefGoogle Scholar
Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).CrossRefGoogle ScholarPubMed
Wang, Z., Guo, S., Wang, Q., Liu, Z., Wang, J., Yang, Y., and Liu, C.T.: Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics 53, 183 (2014).CrossRefGoogle Scholar
Ma, Y., Feng, Y.H., Debela, T.T., Peng, G.J., and Zhang, T.H.: Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Metals Hard Mater. 54, 395 (2016).CrossRefGoogle Scholar
Zhang, L., Yu, P., Cheng, H., Zhang, H., Diao, H., Shi, Y., Chen, B., Chen, P., Feng, R., Bai, J., Jing, Q., Ma, M., Liaw, P.K., Li, G., and Liu, R.: Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 47, 5871 (2016).CrossRefGoogle Scholar
Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).CrossRefGoogle Scholar
Poletti, M.G., Fiore, G., Gili, F., Mangherini, D., and Battezzati, L.: Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+5 at.% of C. Mater. Des. 115, 247 (2017).CrossRefGoogle Scholar
Ye, Y.X., Liu, C.Z., Wang, H., and Nieh, T.G.: Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 147, 78 (2018).CrossRefGoogle Scholar
Dou, R. and Derby, B.: A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524 (2009).CrossRefGoogle Scholar
Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).CrossRefGoogle Scholar
Ng, K.S. and Ngan, A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).CrossRefGoogle Scholar
Schneider, A.S., Kaufmann, D., Clark, B.G., Frick, C.P., Gruber, P.A., Monig, R., Kraft, O., and Arzt, E.: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, 105501 (2009).CrossRefGoogle ScholarPubMed
Schneider, A.S., Frick, C.P., Clark, B.G., Gruber, P.A., and Arzt, E.: Influence of orientation on the size effect in bcc pillars with different critical temperatures. Mater. Sci. Eng., A 528, 1540 (2011).CrossRefGoogle Scholar
Kim, J.Y. and Greer, J.R.: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245 (2009).CrossRefGoogle Scholar
Kim, J-Y., Jang, D., and Greer, J.R.: Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355 (2010).CrossRefGoogle Scholar
Rao, S.I., Dimiduk, D.M., Tang, M., Parthasarathy, T.A., Uchic, M.D., and Woodward, C.: Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 87, 4777 (2007).CrossRefGoogle Scholar
Norfleet, D.M., Dimiduk, D.M., Polasik, S.J., Uchic, M.D., and Mills, M.J.: Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988 (2008).CrossRefGoogle Scholar
Greer, J.R. and Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).CrossRefGoogle Scholar
Liu, Z., Guo, S., Liu, X., Ye, J., Yang, Y., Wang, X-L., Yang, L., An, K., and Liu, C.T.: Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scr. Mater. 64, 868 (2011).CrossRefGoogle Scholar
Giwa, A.M., Liaw, P.K., Dahmen, K.A., and Greer, J.R.: Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi high entropy alloy. Extreme Mech. Lett. 8, 220 (2016).CrossRefGoogle Scholar
Raghavan, R., Kirchlechner, C., Jaya, B.N., Feuerbacher, M., and Dehm, G.: Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scr. Mater. 129, 52 (2017).CrossRefGoogle Scholar
Zhang, H., Siu, K.W., Liao, W., Wang, Q., Yang, Y., Lu, Y. : In situ mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Mater. Res. Express 3, 094002 (2016).CrossRefGoogle Scholar
Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).CrossRefGoogle ScholarPubMed
Heczel, A., Kawasaki, M., Ugi, D., Jang, J-i., Langdon, T.G., and Gubicza, J.: The influence of chemical heterogeneities on the local mechanical behavior of a high-entropy alloy: A micropillar compression study. Mater. Sci. Eng., A 721, 165 (2018).CrossRefGoogle Scholar
El-Awady, J.A., Uchic, M.D., Shade, P.A., Kim, S-L., Rao, S.I., Dimiduk, D.M., and Woodward, C.: Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals. Scr. Mater. 68, 207 (2013).CrossRefGoogle Scholar
Hütsch, J. and Lilleodden, E.T.: The influence of focused-ion beam preparation technique on microcompression investigations: Lathe versus annular milling. Scr. Mater. 77, 49 (2014).CrossRefGoogle Scholar
Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).CrossRefGoogle Scholar
Zou, Y., Ma, H., and Spolenak, R.: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).CrossRefGoogle ScholarPubMed
Weinberger, C.R. and Cai, W.: Surface-controlled dislocation multiplication in metal micropillars. Proc. Natl. Acad. Sci. U. S. A. 105, 14304 (2008).CrossRefGoogle ScholarPubMed
Greer, J.R., Weinberger, C.R., and Cai, W.: Comparing the strength of fcc and bcc sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater. Sci. Eng., A 493, 21 (2008).CrossRefGoogle Scholar
Wheeler, J.M., Maier, V., Durst, K., Göken, M., and Michler, J.: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108 (2013).CrossRefGoogle Scholar
Wei, Q. and Kecskes, L.J.: Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten. Mater. Sci. Eng., A 491, 62 (2008).CrossRefGoogle Scholar
Mohanty, G., Wheeler, J.M., Raghavan, R., Wehrs, J., Hasegawa, M., Mischler, S., Philippe, L., and Michler, J.: Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philos. Mag., 95, 878 (2014).Google Scholar
Cai, Z., Cui, X., Liu, E., Li, Y., Dong, M., Lu, B., and Jin, G.: Fracture behavior of high-entropy alloy coating by in situ TEM tensile testing. J. Alloy. Comp. 729, 897 (2017).CrossRefGoogle Scholar
Gao, L., Song, J., Jiao, Z., Liao, W., Luan, J., Surjadi, J.U., Li, J., Zhang, H., Sun, D., and Liu, C.T.: High-entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv. Eng. Mater. 20, 1700625 (2018).CrossRefGoogle Scholar
Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J-P.: Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).CrossRefGoogle ScholarPubMed
Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W., and Dolinšek, J.: Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).CrossRefGoogle ScholarPubMed
Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, K., and Luo, J.: High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).CrossRefGoogle Scholar
Zhang, Z., Mao, M., Wang, J., Gludovatz, B., Zhang, Z., Mao, S.X., George, E.P., Yu, Q., and Ritchie, R.O.: Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).CrossRefGoogle ScholarPubMed
Zaiser, M. and Seeger, A.: Chapter 56 long-range internal stresses, dislocation patterning and work-hardening in crystal plasticity. In Dislocations in Solids, Nabarro, F.R.N. and Duesbery, M.S., ed. (Elsevier, Oxford, U.K. 2002); p. 1.Google Scholar
Walker, A., Carrez, P., and Cordier, P.: Atomic-scale models of dislocation cores in minerals: Progress and prospects. Mineral. Mag. 74, 381 (2010).CrossRefGoogle Scholar
McNally, P.J.: Techniques: 3D imaging of crystal defects. Nature 496, 37 (2013).CrossRefGoogle ScholarPubMed
Iqbal, F., Ast, J., Göken, M., and Durst, K.: In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 60, 1193 (2012).CrossRefGoogle Scholar
Kiener, D., Grosinger, W., Dehm, G., and Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580 (2008).CrossRefGoogle Scholar
Minor, A.M., Shan, Z.W., Mishra, R.K., Asif, S.A.S., and Warren, O.L.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).Google Scholar
Hull, D. and Bacon, D.J.: Introduction to Dislocations (Elsevier, Oxford, U.K. 2011).Google Scholar
Lin, Q. and Corbett, J.D.: New building blocks in the 2/1 crystalline approximant of a Bergman-type icosahedral quasicrystal. Proc. Natl. Acad. Sci. U. S. A. 103, 13589 (2006).CrossRefGoogle ScholarPubMed