Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T02:56:17.807Z Has data issue: false hasContentIssue false

Nanomechanical properties of ordered phthalocyanine Langmuir–Blodgett layers

Published online by Cambridge University Press:  03 March 2011

Tammy Oshiro
Affiliation:
Department of Chemistry and Materials Science Program, Washington State University, Pullman, Washington 99164-4630
Arnie Backstrom
Affiliation:
Department of Chemistry and Materials Science Program, Washington State University, Pullman, Washington 99164-4630
Ann-Marie Cumberlidge
Affiliation:
Department of Chemistry and Materials Science Program, Washington State University, Pullman, Washington 99164-4630
K.W. Hipps
Affiliation:
Department of Chemistry and Materials Science Program, Washington State University, Pullman, Washington 99164-4630
Ursula Mazur*
Affiliation:
Department of Chemistry and Materials Science Program, Washington State University, Pullman, Washington 99164-4630
S.P. Pevovar
Affiliation:
School of Mechanical and Materials Engineering and Materials Science Program, Washington State University, Pullman, Washington 99164-2920
D.F. Bahr
Affiliation:
School of Mechanical and Materials Engineering and Materials Science Program, Washington State University, Pullman, Washington 99164-2920
Joanne Smieja
Affiliation:
Department of Chemistry, Gonzaga University Spokane, Washington 99258
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The mechanical properties of monolayer and multilayer structures of several symmetrically substituted alkoxy copper phthalocyanine, CuPc(OR)8, Langmuir–Blodgett (LB) films were evaluated. One-dimensional compliance of the monolayers was determined from the slopes of the surface pressure–area isotherms. Multilayers were examined using a SPM and a commercial nanoindentation system. The nanomechanical studies show a distinct relationship between the position and length of alkoxy substituents on the Pc macrocycle and the LB film elasticity and hardness. The phthalocyanine complexes with peripheral octabutoxy and octaoctyloxy substituents form stiff LB monolayers and multilayers. The nonperipheral alkoxy derivetized CuPc films were less stiff. For monolayer films, it appears that the extent of π-π interaction determines the strength of the film. In multilayers, significant additional stability can be imparted through interdigitation of long paraffinic chains which play a significant role in determining the interlayer structure of the LB layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRERENCES

1McKeown, N.B., Phthalocyanine Materials: Synthesis, Structure, and Function (Cambridge Univ. Press. Cambridge, U.K., 1998) pp. 88, 126, 140.Google Scholar
2McKeown, N.B., Chem. Ind. 3, 92 (1999).Google Scholar
3Jiang, J., Kasuga, K. and Arnold, D.P. in Supramolecular Photosensitive and Electroactive Materials, edited by Nalwa, H.S., (Academic Press, London, U.K., 2001), p. 113.CrossRefGoogle Scholar
4Gregory, P., J. Porph. Phthal. 4,432 (2000).3.0.CO;2-N>CrossRefGoogle Scholar
5Chen, Q., Gu, D., Gan, F., Xu, L. and Li, M., Appl. Surf. Sci. 93, 151 (1996).CrossRefGoogle Scholar
6Zangmeister, R.A.P., O’Brien, D.F. and Armstrong, N.R., Adv. Funct. Mater. 12, 179 (2002).3.0.CO;2-A>CrossRefGoogle Scholar
7McKeown, N.B., J. Mater. Chem. 10,1979 (2000).CrossRefGoogle Scholar
8Drager, A.S., Zangmeister, R.A., Armstrong, N.R. and O’Brien, D.F., J. Am. Chem. Soc. 123, 3595 (2001).CrossRefGoogle Scholar
9Donley, C.L., Xia, W., Minch, B.A., Zangmeister, R.A.P., Drager, A.S., Nebesny, K., O’Brien, D.F. and Armstrong, N.R., Langmuir 19, 6512 (2003).CrossRefGoogle Scholar
10Gattinger, P., Rengel, H., Neher, D., Gurka, M., Buck, M., van Craats, A.M. de and Warman, J.M., J. Phys. Chem . B 103, 3179 (1999).CrossRefGoogle Scholar
11Albouy, P.A., J. Phys. Chem. 98, 8543 (1994).CrossRefGoogle Scholar
12Cook, J., Pure Appl. Chem. 71, 2145 (1999).CrossRefGoogle Scholar
13Smolenyak, P.E., Osburn, E.J., Chen, S.Y., Chau, L.K., O’Brien, D.F. and Armstrong, N. R., Langmuir 13, 6568 (1997).CrossRefGoogle Scholar
14Velez, M., Vieira, M.S., Chambrier, I. and Cook, M.J., Langmuir 14, 4227 (1998).CrossRefGoogle Scholar
15Stevenson, K., Miyashita, N., Smieja, J. and Mazur, U., Ultramicroscopy 97, 271 (2003).CrossRefGoogle Scholar
16Schouten, P.G., Warman, J.M., de Haas, M.P., van Nostrum, C.F., Gelinck, G.H., Nolte, R.J.M., Copyn, M.J., Zwikker, J.W. and Engel, M.K., J. Amer. Chem. Soc. 116, 6880 (1995).CrossRefGoogle Scholar
17Brewis, M., Clarkson, G.J., Holder, A.M. and McKeown, N.B., Chem. Com. 9, 969 (1998).CrossRefGoogle Scholar
18Davidson, K., Jones, R. and McDonald, S., Synth. Met. 121, 1399 (2001).CrossRefGoogle Scholar
19Foley, S., J. Chem. Soc. Perkin Trans. Phys. Org. Chem. 2, 1725 (1997).Google Scholar
20 K. Stevenson: “Monolayer Study of Copper (II) Phthalocyanine Compounds,” MS Thesis, Washington State University (2001).Google Scholar
21VanLandingham, M.R., McKnight, S.H., Palmese, G.R., Elings, J.R., Huang, X., Bogetti, T.A., Eduljee, F., Gillespie, J.W. and Jr., , J. Adhesion 64, 31 (1997).CrossRefGoogle Scholar
22Johnson, K.L., Contact Mechanics (Cambridge Univ. Press. Cambridge, U.K., 1985), pp. 84104.CrossRefGoogle Scholar
23Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
24Klapperich, C., Pruitt, L. and Komvopoulos, K., J. Mater. Res. 17, 423 (2002).CrossRefGoogle Scholar
25Behroozi, F., Langmuir 12, 2289 (1996).CrossRefGoogle Scholar
26Cong, P., Igari, T., Nanao, H. and Mori, S., Sekiyu Gakkaishi 42, 241 (2000).CrossRefGoogle Scholar
27 K. Stevenson, N. Miyashita, J. Smieja, and U. Mazur: (unpublished).Google Scholar
28Smolenyak, P.E., Peterson, R., Nebesny, K., Torker, M., O’Brien, D.F. and Armstrong, N.R., J. Amer. Chem. Soc. 121, 8628 (1999).CrossRefGoogle Scholar
29Simons, J. and Andre, J.J., Molecular Semiconductors Photoelectrical Properties and Solar Cells (Springer-Verlag, New York, 1985), p. 80.Google Scholar
30Kiridena, W., Jain, V., Kuo, P.K. and Liu, G., Surf. Interface Anal. 25, 383 (1997).3.0.CO;2-S>CrossRefGoogle Scholar
31Read, D.T. and Dally, J.W. in Mechanical Behavior of Aluminum and Copper Thin Films in Mechanics and Materials for Electronic Packaging 2, Thermal and Mechanical Behavior and Modeling, edited by Schen, M., Abe, H., and Suhir, E. (American Society of Mechanical Engineers, AMD 1994), p. 41.Google Scholar
32 Encyclopedia of Materials: Science and Technology (Cambridge Univ. Press. Cambridge, U.K., 2001), l. 3, p. 2009.Google Scholar
33Floresa, A., Callejaa, F.J.B., Attenburrowb, G.E. and Bassettb, D.C., Polymer 4, 5431 (2000).CrossRefGoogle Scholar
34Jardret, V., Zahouani, H., Loubet, J.L. and Mathia, T.G., Wear 218, 8 (1998).CrossRefGoogle Scholar