Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T21:07:45.871Z Has data issue: false hasContentIssue false

Nanoindentation-induced deformation, microfracture, and phase transformation in crystalline materials investigated in situ by acoustic emission

Published online by Cambridge University Press:  17 February 2020

Xiao-Guang Ma
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
Kyriakos Komvopoulos*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

With the ever-increasing importance of nanoscale deformation phenomena in contemporary technologies, basic understanding of material behavior at the nanoscale has become of critical importance. Especially, nanomechanical testing that provides the capability to study fundamental nanoscale deformation and phase change phenomena in real time and under controlled loading conditions is essential for nanomaterial research. In this study, acoustic emission (AE) was used in situ to characterize nanoindentation-induced deformation, microfracture, and phase transformation processes intrinsic of bulk single-crystal MgO and polycrystalline Al, thin films of polycrystalline SiC, and thick films of austenitic TiNi shape-memory alloy. Scale-dependent plastic deformation and microfracture affected by the indenter tip radius and the applied normal load are interpreted in terms of the type and intensity of AE events revealed by abrupt displacement excursions in the loading response of the indented materials. The amplitudes of AE waveforms are used to examine characteristic deformation, microfracture, and phase change mechanisms in the time domain. Fast Fourier transformation and short-time Fourier transformation analyses provide further insight into the material behavior and structural changes due to indentation loading in the frequency and time-frequency domain, respectively. The methodology developed in this study represents an effective approach for nanomechanical testing and in situ characterization of nanoscale deformation, microfracture, and phase transformation phenomena.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present address: International Institute for Urban Systems Engineering, Southeast University, Nanjing 210096, China.

References

Cheng, Y-T., Page, T., Pharr, G.M., Swain, M.V., and Wahl, K.J.: Fundamentals and applications of instrumented indentation in multidisciplinary research. J. Mater. Res. 19, 1 (2004).CrossRefGoogle Scholar
Page, T.F., Oliver, W.C., and McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
Tromas, C., Girard, J.C., Audurier, V., and Woirgard, J.: Study of the low stress plasticity in single-crystal MgO nanoindentation and atomic force microscopy. J. Mater. Sci. 34, 5337 (1999).CrossRefGoogle Scholar
Kailer, A., Gogotsi, Y.G., and Nickel, K.G.: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997).CrossRefGoogle Scholar
Fleming, R.A. and Zou, M.: The effects of confined core volume on the mechanical behavior of Al/a-Si core–shell nanostructures. Acta Mater. 128, 149 (2017).CrossRefGoogle Scholar
Field, J.S., Swain, M.V., and Dukino, R.D.: Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 18, 1412 (2003).CrossRefGoogle Scholar
Berasategui, E.G. and Page, T.F.: The contact response of thin SiC-coated silicon systems—Characterisation by nanoindentation. Surf. Coat. Technol. 163–164, 491 (2003).CrossRefGoogle Scholar
Zhou, J., Komvopoulos, K., and Minor, A.M.: Nanoscale plastic deformation and fracture of polymers studied by in situ nanoindentation in a transmission electron microscope. Appl. Phys. Lett. 88, 181908 (2006).CrossRefGoogle Scholar
Dyjak, P. and Singh, R.P.: Acoustic emission analysis of nanoindentation-induced fracture events. Exp. Mech. 46, 333 (2006).CrossRefGoogle Scholar
Domnich, V., Gogotsi, Y., and Dub, S.: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).CrossRefGoogle Scholar
Behrens, G., Dransmann, G.W., and Heuer, A.H.: On the isothermal martensitic transformation in 3Y‐TZP. J. Am. Ceram. Soc. 76, 1025 (1993).CrossRefGoogle Scholar
Kailer, A., Nickel, K.G., and Gogotsi, Y.G.: Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J. Raman Spectrosc. 30, 939 (1999).3.0.CO;2-C>CrossRefGoogle Scholar
Ma, X-G. and Komvopoulos, K.: Nanoscale pseudoelastic behavior of indented titanium-nickel films. Appl. Phys. Lett. 84, 3773 (2003).CrossRefGoogle Scholar
Li, Z.C., Liu, L., Wu, X., He, L.L., and Xu, Y.B.: Indentation induced amorphization in gallium arsenide. Mater. Sci. Eng. A 337, 21 (2002).CrossRefGoogle Scholar
Yoo, B-G., Choi, I-C., Kim, Y-J., Suh, J-Y., Ramamurty, U., and Jang, J-i.: Further evidence for room temperature, indentation-induced nanocrystallization in a bulk metallic glass. Mater. Sci. Eng. A 545, 225 (2012).CrossRefGoogle Scholar
Kim, J-J., Choi, Y., Suresh, S., and Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).Google ScholarPubMed
Minor, A.M., Morris, J.W. Jr., and Stach, E.A.: Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625 (2001).CrossRefGoogle Scholar
Komvopoulos, K. and Ma, X-G.: Pseudoelasticity of martensitic titanium-nickel shape-memory films studied by in situ heating nanoindentation and transmission electron microscopy. Appl. Phys. Lett. 87, 263108 (2005).CrossRefGoogle Scholar
Carlyle, J.M.: In-flight crack detection via acoustic emission. J. Acoust. Soc. Am. 68, S104 (1980).CrossRefGoogle Scholar
Koerner, R.M. and Lord, A.E. Jr.: Application of acoustic emission in the geotechnical area. J. Acoust. Soc. Am. 64, S175 (1978).CrossRefGoogle Scholar
McWilliams, R.S., Spaulding, D.K., Eggert, J.H., Celliers, P.M., Hicks, D.G., Smith, R.F., Collins, G.W., and Jeanloz, R.: Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science 338, 1330 (2012).CrossRefGoogle ScholarPubMed
Oganov, A.R., Gillan, M.J., and Price, G.D.: Ab initio lattice dynamics and structural stability of MgO. J. Chem. Phys. 118, 10174 (2003).CrossRefGoogle Scholar
Alfè, D., Alfredsson, M., Brodholt, J., Gillan, M.J., Towler, M.D., and Needs, R.J.: Quantum Monte Carlo calculations of the structural properties and the B1–B2 phase transition of MgO. Phys. Rev. B 72, 014114 (2005).CrossRefGoogle Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).CrossRefGoogle Scholar
Tymiak, N.I., Daugela, A., Wyrobek, T.J., and Warren, O.L.: Highly localized acoustic emission monitoring of nanoscale indentation contacts. J. Mater. Res. 18, 784 (2003).CrossRefGoogle Scholar
Corcoran, S.G., Colton, R.J., Lilleodden, E.T., and Gerberich, W.W.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997).CrossRefGoogle Scholar
Bahr, D.F., Kramer, D.E., and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris, J.W. Jr., Zettl, A., and Dahmen, U.: Development of a nanoindenter for in situ transmission electron microscopy. Microsc. Microanal. 7, 507 (2001).Google ScholarPubMed
Shiwa, M., Weppelmann, E.R., Bendeli, A., Swain, M.V., Munz, D., and Kishi, T.: Acoustic emission and precision force-displacement observations of spherical indentations into TiN films on silicon. Surf. Coat. Technol. 68–69, 598 (1994).CrossRefGoogle Scholar
Ma, X-G., Komvopoulos, K., and Bogy, D.B.: Nanoindentation of polycrystalline silicon–carbide thin films studied by acoustic emission. Appl. Phys. Lett. 85, 1695 (2004).CrossRefGoogle Scholar
Sangwal, K., Gorostiza, P., Servat, J., and Sanz, F.: Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals. J. Mater. Res. 14, 3973 (1999).CrossRefGoogle Scholar
Stoldt, C.R., Fritz, M.C., Carraro, C., and Maboudian, R.: Micromechanical properties of silicon-carbide thin films deposited using single-source chemical-vapor deposition. Appl. Phys. Lett. 79, 347 (2001).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Ma, X-G. and Komvopoulos, K.: Pseudoelasticity of shape-memory titanium–nickel films subjected to dynamic nanoindentation. Appl. Phys. Lett. 84, 4274 (2004).CrossRefGoogle Scholar
Ma, X-G. and Komvopoulos, K.: In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium–nickel films. J. Mater. Res. 20, 1808 (2005).CrossRefGoogle Scholar
Zhang, H-S. and Komvopoulos, K.: Nanoscale pseudoelasticity of single-crystal Cu–Al–Ni shape-memory alloy induced by cyclic nanoindentation. J. Mater. Sci. 41, 5021 (2006).CrossRefGoogle Scholar