Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:41:05.687Z Has data issue: false hasContentIssue false

Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al

Published online by Cambridge University Press:  02 June 2011

Verena Maier
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Karsten Durst*
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Johannes Mueller
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Björn Backes
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Heinz Werner Höppel
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
Mathias Göken
Affiliation:
Department of Materials Science and Engineering, Institute 1: General Materials Properties, University Erlangen-Nuremberg, 91058 Erlangen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A nanoindentation strain-rate jump technique has been developed for determining the local strain-rate sensitivity (SRS) of nanocrystalline and ultrafine-grained (UFG) materials. The results of the new method are compared to conventional constant strain-rate nanoindentation experiments, macroscopic compression tests, and finite element modeling (FEM) simulations. The FEM simulations showed that nanoindentation tests should yield a similar SRS as uniaxial testing and generally a good agreement is found between nanoindentation strain-rate jump experiments and compression tests. However, a higher SRS is found in constant indentation strain-rate tests, which could be caused by the long indentation times required for tests at low indentation strain rates. The nanoindentation strain-rate jump technique thus offers the possibility to use single indentations for determining the SRS at low strain rates with strongly reduced testing times. For UFG-Al, extremely fine-grained regions around a bond layer exhibit a substantial higher SRS than bulk material.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).Google Scholar
2.Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C.: Paradoxon of strength and ductility in metals processed by SPD. J. Mater. Res. 17, 5 (2002).CrossRefGoogle Scholar
3.Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).CrossRefGoogle Scholar
4.May, J., Höppel, H.W., and Göken, M.: Strain-rate sensitivity of ultra-fine grained aluminium produced by SPD. Scr. Mater. 53, 189 (2005).Google Scholar
5.Li, Y.J., Mueller, J., Höppel, H.W., Göken, M., and Blum, W.: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708 (2007).Google Scholar
6.Vevecka-Piftaj, A., Böhner, A., May, J., Höppel, H.W., and Göken, M.: Strainrate sensitivity of ultrafine grained aluminium alloy AA6061. Mater. Sci. Forum 584586, 741 (2008).Google Scholar
7.Dalla Torre, F., Van Swygenhoven, H., and Victoria, M.: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).Google Scholar
8.Höppel, H.W., May, J., and Göken, M.: Enhanced strength and ductility in ultrafine grained aluminium produced by ARB. Adv. Eng. Mater. 6, 781 (2004).Google Scholar
9.Vehoff, H., Lemaire, D., Schüler, K., Waschkies, T., and Yang, B.: The effect of grain size on strain-rate sensitivity and activation volume—from nano to ufg nickel. Int. J. Mat. Res. 98, 259 (2007).CrossRefGoogle Scholar
10.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
11.Mayo, M.J. and Nix, W.D.: A micro-indentation study of superplasticity in Pb, Sn and Sn-38wt%Pb. Acta Metall. 36, 2183 (1988).Google Scholar
12.Mayo, M.J., Siegel, R.W., Narayanasamy, A., and Nix, W.D.: Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073 (1990).CrossRefGoogle Scholar
13.Mayo, M.J., Siegel, R.W., Liao, Y.X., and Nix, W.D.: Nanoindentation on nanocrystal ZnO. J. Mater. Res. 7, 973 (1992).Google Scholar
14.Bower, A.F., Fleck, N.A., Needleman, A., and Ogbonna, N.: Indentation of power law creeping solid. Proc. R. Soc. London, Ser. A 441, 97 (1993).Google Scholar
15.Mulhearn, T.O. and Tabor, D.: Creep and hardness of metals: A physical study. J. Inst. Met. 89, 7 (1960).Google Scholar
16.Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high purity. Int. Metal. Mater. Trans. A 30A, 601 (1999).Google Scholar
17.Alkorta, J., Martinez-Esnaola, J.M., and Sevillano, J.G.: Critical examinations of strain-rate sensitivity measured by nanoindentation methods: Application to severely deformed niobium. Acta Mater. 56, 884 (2008).Google Scholar
18.Hart, E.W.: Theory of the tensile test. Acta Metall. 15, 351 (1967).Google Scholar
19.Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., and Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).CrossRefGoogle Scholar
20.Nix, W.D. and Gao, H.: Indentation size effect of crystalline materials: A law for strain grading plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
21.Durst, K., Backes, B., and Göken, M.: Indentation size effect of metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093 (2005).CrossRefGoogle Scholar
22.Backes, B., Durst, K., and Göken, M.: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006).Google Scholar
23.Mirshams, R.A. and Parakala, P.: Nanoindentation of nanocrystalline Ni with geometrically different indenters. Mater. Sci. Eng., A 372, 252 (2004).Google Scholar
24.Natter, H. and Hempelmann, R.: Tailor-made nanomaterials designed by electrochemical methods. Electrochim. Acta 49, 51 (2003).Google Scholar
25.Böhner, A., Maier, V., Durst, K., Höppel, H.W., and Göken, M.: Macro- and nanomechanical properties and strain-rate sensitivity of accumulative roll bonded and equal channel angular pressed ultrafine-grained materials. Adv. Eng. Mater. 13, 251 (2011).CrossRefGoogle Scholar
26.Durst, K., Franke, O., Böhner, A., and Göken, M.: Indentation size effect in Ni-Fe solid-solutions. Acta Mater. 55, 6825 (2007).Google Scholar
27.Pharr, G.M., Strader, J., and Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653 (2009).CrossRefGoogle Scholar
28.Mueller, J., Durst, K., Amberger, D., and Göken, M.: Local investigations of the mechanical properties of ufg metals by nanoindentation. Mater. Sci. Forum 503/504, 31 (2006).CrossRefGoogle Scholar
29.Blum, W. and Li, Y.J.: Flow stress and creep rate of nanocrystalline Ni. Scr. Mater. 57, 429 (2007).Google Scholar
30.Atkins, A.G. and Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149 (1965).Google Scholar
31.Backes, B., Huang, Y.Y., Göken, M., and Durst, K.: The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. J. Mater. Res. 24, 1197 (2009).Google Scholar
32.Gu, C.D., Lian, J.S., Jiang, Q., and Zheng, W.T.: Experimental and modeling investigations on the strain-rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40, 7440 (2007).Google Scholar
33.Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nc nickel. Acta Mater. 51, 5159 (2003).Google Scholar
34.Shen, Y.F., Xue, W.Y., Wang, Y.D., Liu, Z.Y., and Zuo, L.: Mechanical properties of nanocrystalline nickel film deposited by pulse plating. J. Surf. Coat. 202, 5140 (2008).Google Scholar
35.Shen, X., Lian, J., Jiang, Z., and Jiang, Q.: High strength and high ductility of electrodeposited nanocrystalline Ni with broad grain size distribution. Mater. Sci. Eng., A 487, 410 (2008).Google Scholar
36.Dalla Torre, F., Spätig, P., Schäublin, R., and Victoria, M.: Deformation behavior and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53, 2337 (2005).Google Scholar
37.Wang, Y.M., Hamza, A.V., and Ma, E.: Temperature-dependent strain-rate sensitivity and activation volume in nanocrystalline Ni. Acta Mater. 54, 2715 (2006).Google Scholar
38.Höppel, H.W., May, J., Eisenlohr, P., and Göken, M.: Strain-rate sensitivity of ultrafine grained materials. Z. Metallk. 96, 6 (2005).Google Scholar
39.Meyers, M.A., Misha, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
40.Schweitzer, E., Durst, K., Amberger, D., and Göken, M.: The mechanical properties in the vicinity of grain boundaries in ultrafine-grained and polycrystalline materials studied by nanoindentation, in Nanoscale Materials and Modeling--Relations Among Processing, Microstructure and Mechanical Properties, edited by Anderson, P.M., Foecke, T., Misra, A., and Rudd, R.E. (Mater. Res. Soc. Symp. Proc. 821, Warrendale, PA, 2004), P4.9.1/N4.9.1.Google Scholar
41.Lee, S.H., Saito, Y., Sakai, T., and Utsunomiya, H.: Microstructure and mechanical properties of 6061 aluminum alloy processed by accumulative roll bonding. Mater. Sci. Eng., A 325, 228 (2002).Google Scholar
42.Lee, S.H., Saito, Y., Tsuji, N., Utsunomiya, H., and Sakai, T.: Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scr. Mater. 46, 281 (2002).Google Scholar