Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T18:26:35.508Z Has data issue: false hasContentIssue false

Nanocrystalline BaTiO3 from freeze-dried nitrate solutions

Published online by Cambridge University Press:  31 January 2011

J. M. McHale
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 85745
P. C. McIntyre
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 85745
K. E. Sickafus
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 85745
N. V. Coppa
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 85745
Get access

Abstract

An aqueous, all nitrate, solution-based preparation of BaTiO3 is reported here. Rapid freezing of a barium and titanyl nitrate solution, followed by low temperature sublimitation of the solvent, yielded a freeze-dried nitrate precursor which was thermally processed to produce BaTiO3. XRD revealed that 10 min at temperatures ≧600 °C resulted in the formation of phase pure nanocrystalline BaTiO3. TEM revealed that the material was uniform and nanocrystalline (10–15 nm). The high surface to volume ratio inherent in these small particles stabilized the cubic phase of BaTiO3 at room temperature. It was also found that the average particle size of the BaTiO3 produced was highly dependent upon calcination temperature and only slightly dependent upon annealing time. This result suggests a means of selection of particle size of the product through judicious choice of calcination temperature. The experimental details of the freeze-dried precursor preparation, thermal processing of the precursor, product formation, and product morphology are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kiss, K., Magder, J., Vukasovich, M. S., and Lockhart, R. J., J. Am. Ceram. Soc. 49, 291 (1966).CrossRefGoogle Scholar
2.Stockenhuber, M., Mayer, H., and Lercher, J. A., J. Am. Ceram. Soc. 76, 1185 (1993).CrossRefGoogle Scholar
3.Pechini, M. P., U.S. Patent No. 3330 697, July 11, 1967.Google Scholar
4.Mazdiyasni, K. S., Dolloff, R. T., and Smith, J.S. II, J. Am. Ceram. Soc. 52, 523 (1969).CrossRefGoogle Scholar
5.Pfaff, G., J. Mater. Chem. 2, 591 (1992).CrossRefGoogle Scholar
6.Zhixiong, C., Fangqiao, Z., Meidong, L., Guoan, W., and P. Xiang-sheng, Ferroelectrics 123, 61 (1991).CrossRefGoogle Scholar
7.Flachen, S. S., J. Am. Chem. Soc. 77, 6194 (1955).CrossRefGoogle Scholar
8.Hertl, W., J. Am. Ceram. Soc. 71, 879 (1988).CrossRefGoogle Scholar
9.Phule, P. P. and Risbud, S.H., J. Mater. Sci. 25, 1169 (1990).CrossRefGoogle Scholar
10.Alvazzi Delfrate, M., Leoni, M., Nanni, L., Melioli, E., Watts, B. E., and Leccabue, F., J. Mater. Sci., Mater. Elec. 5, 153 (1994).CrossRefGoogle Scholar
11.Lee, H. G. and Kim, H. G., J. Appl. Phys. 67, 2024 (1990).CrossRefGoogle Scholar
12.Mazdiyasni, K. S., Dolloff, R. T., and Smith, J.S.II, J. Am. Ceram. Soc. 52, 523 (1969).CrossRefGoogle Scholar
13.Schnettler, J. F., Monforte, F.R., and Rhodes, W. W., in Science of Ceramics, edited by Stewart, G. H. (British Ceramics Society, Manchester, 1968).Google Scholar
14.Tseung, A. C. C. and Bevan, H. L., J. Mater. Sci. 5, 604 (1970).CrossRefGoogle Scholar
15.Barksdale, J., Titanium, Its Occurrence, Chemistry, and Technology (Ronald Press, New York, 1966).Google Scholar
16.Weiser, H. B., Inorganic Colloid Chemistry, Volume II, The Hydrous Oxides and Hydroxides (John Wiley and Sons, London, 1935).Google Scholar
17.Hixson, A. W. and Plechner, W.W., Ind. Eng. Chem. 25, 262 (1933).CrossRefGoogle Scholar
18.Yamamura, H., Watanabe, A., Shirasaki, S., Moriyoshi, Y., and Tanada, M., Ceram. Int. 11, 17 (1985).CrossRefGoogle Scholar
19.DeLeeuw, D. M., Mutsaers, C. A. H. A., Langereis, C., Smoorenberg, H.C.A., and Rommers, P.J., Physica C 152, 39 (1988).CrossRefGoogle Scholar
20.Ruckenstein, E., Narain, S., and Wu, N. L., J. Mater. Res. 4, 267 (1989).CrossRefGoogle Scholar
21.Shaw, T. M., Dinos, D., Batson, P.E., Shrott, A. G., Clarke, D.R., and Duncombe, P.R., J. Mater. Res. 5, 1176 (1990).CrossRefGoogle Scholar
22.McHale, J.M. and Coppa, N.V., unpublished work.Google Scholar
23.Coppa, N. V., Doctoral Dissertation, Temple University, Philadelphia, PA (1990).Google Scholar
24.Ozra, T. M., Jha, J. C., and Ezekiel, E.I., Indian, J.Chem. Soc. 45, 420 (1968).Google Scholar
25.Coppa, N. V., Myer, G.H., Salomon, R.E., Bura, A., O'Reilley, J.W., Crow, J. E., and Davies, P.K., J. Mater. Res. 7, 2017 (1992).CrossRefGoogle Scholar
26.Brosha, E. L., Sanchez, E., Davies, P. K., Coppa, N. V., Thomas, A., and Salomon, R. E., Physica C 184, 353 (1991).CrossRefGoogle Scholar
27.CRC Handbook of Physics and Chemistry, 56th ed., edited by R. C. Weast (CRC Press, Cleveland, OH, 1976).Google Scholar
28.Templeton, L. K. and Pask, J. A., J. Am. Ceram. Soc. 42, 212 (1959).CrossRefGoogle Scholar
29. As prepared in Ref. 22.Google Scholar
30.Takemuchi, T., Ado, K., Asai, T., Kageyama, H., Saito, Y., Masqueleir, C., and Nakamura, O., J. Am. Ceram. Soc. 77, 1665 (1994).CrossRefGoogle Scholar
31. The possible ternary impurity, Ba2TiO4, is reported to have a ° d-spacing of 3.54 Å.Google Scholar
32.Andersson, S. and Jahnberg, L., Ark. Kemi 21, 413 (1964).Google Scholar
33.Kay, H. F. and Vousdan, P., Philos. Mag. 7, 1019 (1949).CrossRefGoogle Scholar
34.Cullity, B. D., Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978).Google Scholar
35.Naka, S., Nakakita, F., Suwa, Y., and Inagaki, M., Bull. Chem. Soc. Jpn. 47, 1168 (1974).CrossRefGoogle Scholar