Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T04:21:36.007Z Has data issue: false hasContentIssue false

Multiferroic CoFe2O4–BiFeO3 core–shell nanofibers and their nanoscale magnetoelectric coupling

Published online by Cambridge University Press:  04 March 2014

Qingfeng Zhu
Affiliation:
Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105, China
Ying Xie*
Affiliation:
Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105, China
Jing Zhang
Affiliation:
Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105, China
Yuanming Liu
Affiliation:
Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195
Qingfeng Zhan
Affiliation:
Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Hongchen Miao
Affiliation:
State Key Lab for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
Shuhong Xie*
Affiliation:
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, China
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Multiferroic CoFe2O4–BiFeO3 (CFO–BFO) core–shell nanofibers were synthesized by coaxial electrospinning. The spinel structure of CFO and perovskite structure of BFO were confirmed by x-ray diffraction and high-resolution transmission electron microscopy. The core–shell configuration of nanofibers was verified by scanning electron microscopy and transmission electron microscopy images. The macroscopic ferromagnetic property of core–shell nanofibers was demonstrated by magnetic hysteresis loop. The local magnetoelectric (ME) coupling was confirmed by using dual frequency piezoresponse force microscopy (PFM) under an external magnetic field, showing magnetically induced evolution of piezoresponse and domain structure. The ferroelectric characteristics are demonstrated by the switching spectroscopy PFM. From PFM hysteresis and butterfly loops, it is observed that the piezoresponse amplitude is reduced while coercive voltage increased under external in-plane magnetic field, induced through the mechanical interactions between magnetostrictive CFO and piezoelectric BFO, from which the lateral ME coupling can be estimated quantitatively. The nanofibers thus can find a variety of applications as a one-dimensional multiferroic material.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smolenskiĭ, G. and Chupis, I.: Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).Google Scholar
Dey, P., Nath, T., Nanda Goswami, M.L., and Kundu, T.: Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3-(1-x)ErMnO3 (weight percent x=0.1, 0.2) composites. Appl. Phys. Lett. 90, 162510 (2007).Google Scholar
Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994).Google Scholar
Spaldin, N.A. and Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).CrossRefGoogle ScholarPubMed
Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).CrossRefGoogle Scholar
Hur, N., Park, S., Sharma, P., Ahn, J., Guha, S., and Cheong, S.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004).Google Scholar
Lin, L., Wan, Y., and Li, F.: An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1568 (2012).Google Scholar
Li, L., Li, J., Shu, Y., and Yen, J.: The magnetoelectric domains and cross-field switching in multiferroic BiFeO3 . Appl. Phys. Lett. 93, 192506 (2008).Google Scholar
Ma, J., Hu, J., Li, Z., and Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).Google Scholar
Fetisov, Y. and Srinivasan, G.: Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006).Google Scholar
Ramesh, R. and Spaldin, N.A.: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).CrossRefGoogle ScholarPubMed
Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).Google Scholar
Zhou, J.P., Lv, L., Liu, Q., Zhang, Y.X., and Liu, P.: Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci. Technol. Adv. Mater. 13, 045001 (2012).Google Scholar
Wan, J.G., Liu, J.M., Wang, G.H., and Nan, C.W.: Magnetoelectric CoFe2O4-lead zirconate titanate thick films prepared by a polyvinylpyrrolidone-assisted sol-gel method. Appl. Phys. Lett. 88, 182502 (2006).Google Scholar
Hattrick-Simpers, J.R., Dai, L., Wuttig, M., Takeuchi, I., and Quandt, E.: Demonstration of magnetoelectric scanning probe microscopy. Rev. Sci. Instrum. 78, 106103 (2007).Google Scholar
Zhang, C.L., Chen, W.Q., Xie, S.H., Yang, J.S., and Li, J.Y.: The magnetoelectric effects in multiferroic composite nanofibers. Appl. Phys. Lett. 94, 102907 (2009).Google Scholar
Xie, S.H., Ma, F.Y., Liu, Y.M., and Li, J.Y.: Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 3, 3152 (2011).Google Scholar
Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.H., Kumar, A., Wang, C. H., Melville, A., Adamo, C., Sheng, G., Chu, Y.H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., and Ramesh, R.: A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977 (2009).Google Scholar
Lu, Y., Yin, Y., Li, Z.Y., and Xia, Y.: Synthesis and self-assembly of 2 core shell colloids. Nano Lett. 2, 785 (2002).Google Scholar
Liu, M., Li, X., Imrane, H., Chen, Y., Goodrich, T., Cai, Z., Ziemer, K.S., Huang, J.Y., and Sun, N.X.: Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zi0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 90, 152501 (2007).Google Scholar
Sun, X.M., Liu, J., and Li, Y.: Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mater. 18, 3486 (2006).Google Scholar
Lauhon, L.J., Gudiksen, M.S., Wang, D., and Lieber, C.M.: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).Google Scholar
Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).CrossRefGoogle Scholar
Sun, Z., Zussman, E., Yarin, A.L., Wendorff, J.H., and Greiner, A.: Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater. 15, 1929 (2003).Google Scholar
Zhang, Y.Z., Huang, Z.M., Xu, X.J., Lim, C.T., and Ramakrishna, S.: Preparation of core-shell structured PCL-r-gelatin Bi-component nanofibers by coaxial electrospinning. Chem. Mater. 16, 3406 (2004).Google Scholar
Park, J.Y., Choi, S.W., Lee, J.W., Lee, C., and Kim, S.S.: Synthesis and gas sensing properties of TiO2–ZnO core-shell nanofibers. J. Am. Ceram. Soc. 92, 2551 (2009).Google Scholar
Xie, S.H., Liu, Y.Y., and Li, J.Y.: Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers. Front. Phys. 4, 399 (2012).Google Scholar
Xie, Y., Ou, Y., Ma, F.Y., Tan, X.L., and Xie, S.H.: Synthesis of multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 core-shell nanofibers by coaxial electrospinning. Nanosci. Nanotechnol. Lett. 5, 546 (2013).Google Scholar
Hsieh, Y.H., Liou, J.M., Huang, B.C., Liang, C.W., He, Q., Zhan, Q., Chiu, Y.P., Chen, Y.C., and Chu, Y.H.: Local conduction at the BiFeO3-CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).Google Scholar
Liu, X.L., Li, M.Y., Wang, J., Hu, Z.Q., Zhu, Y.D., and Zhao, X.Z.: Preparation and characterization of multiferroic CoFe2O4/Bi0.97Ce0.03FeO3 coaxial nanotubes. Appl. Phys. A 108, 829 (2012).Google Scholar
Xie, S.H., Li, J.Y., Proksch, R., Liu, Y.M., Zhou, Y.C., Liu, Y.Y., Ou, Y., Lan, L.N., and Qiao, Y.: Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning. Appl. Phys. Lett. 93, 222904 (2008).Google Scholar
Ju, Y.W., Park, J.H., Jung, H.R., Cho, S.J., and Lee, W.J.: Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. Mater. Sci. Eng., B 147, 7 (2008).Google Scholar
Rodriguez, B.J., Callahan, C., Kalinin, S.V., and Proksch, R.: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).Google Scholar
Xie, S.H., Gannepalli, A., Chen, Q.N., Liu, Y.M., Zhou, Y.C., Proksch, R., and Li, J.Y.: High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity. Nanoscale 4, 408 (2012).Google Scholar
Li, F.X. and Rajapakse, R.K.N.D.: A constrained domain-switching model for polycrystalline ferroelectric ceramics. Part II: Combined switching and application to rhombohedral materials. Acta Mater. 55, 6481 (2007).Google Scholar
Jesse, S., Baddorf, A.P., and Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).Google Scholar
Lian, L. and Sottos, N.R.: Stress effects in sol-gel derived ferroelectric thin films. J. Appl. Phys. 95, 629 (2004).Google Scholar
Zhang, J.X., Dai, J.Y., Chow, C.K., Sun, C.L., Lo, V.C., and Chan, H.L.W.: Magnetoelectric coupling in CoFe2O4/SrRuO3/Pb(Zr0.52Ti0.48)O3 heteroepitaxial thin film structure. Appl. Phys. Lett. 92, 022901 (2008).Google Scholar
Yan, L., Xing, Z., Wang, Z., Wang, T., Lei, G., Li, J., and Viehland, D.: Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3-CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).Google Scholar