Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-31T23:22:23.918Z Has data issue: false hasContentIssue false

Morphology, structure, and nucleation of out-of-phase boundaries (OPBs) in epitaxial films of layered oxides

Published online by Cambridge University Press:  31 January 2011

M.A. Zurbuchen*
Affiliation:
Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899; and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
W. Tian
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136
X.Q. Pan
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136
D. Fong
Affiliation:
Materials Science Division, Argonne National Laboratory (ANL), Argonne, Illinois 60439
S.K. Streiffer
Affiliation:
Materials Science Division, Argonne National Laboratory (ANL), Argonne, Illinois 60439
M.E. Hawley
Affiliation:
Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. Lettieri
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
Y. Jia
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
G. Asayama
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
S.J. Fulk
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
D.J. Comstock
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
S. Knapp
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
A.H. Carim
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
D.G. Schlom
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602
*
a)Address all correspondence to this author. e-mail: [email protected]Present address: Electronics and Photonics Laboratory, The Aerospace Corporation, El Segundo, CA 90245.
Get access

Abstract

Out-of-phase boundaries (OPBs) are translation boundary defects characterized by a misregistry of a fraction of a unit cell dimension in neighboring regions of a crystal. Although rarely observed in the bulk, they are common in epitaxial films of complex crystals due to the physical constraint of the underlying substrate and a low degree of structural rearrangement during growth. OPBs can strongly affect properties, but no extensive studies of them are available. The morphology, structure, and nucleation mechanisms of OPBs in epitaxial films of layered complex oxides are presented with a review of published studies and new work. Morphological trends in two families of layered oxide phases are described. The atomic structure at OPBs is presented. OPBs may be introduced into a film during growth via the primary mechanisms that occur at film nucleation (steric, nucleation layer, a-bmisfit, and inclined-cmisfit) or after growth via the secondary nucleation mechanism (crystallographic shear in response to loss of a volatile component). Mechanism descriptions are accompanied by experimental examples. Alternative methods to the direct imaging of OPBs are also presented.

Type
Review
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aurivillius, B.: Mixed bismuth oxides with layer lattices I. The structure type of CaNb2Bi2O9. Ark. Kemi. 1, 463 1950Google Scholar
2Aurivillius, B.: Mixed bismuth oxides with layer lattices II. Structure of Bi4Ti3O12. Ark. Kemi. 1, 499 1950Google Scholar
3Aurivillius, B.: Mixed bismuth oxides with layer lattices III. Structure of BaBi4Ti4O15. Ark. Kemi. 2, 519 1951Google Scholar
4Aurivillius, B.: The structure of Bi2NbO5F and isomorphous compounds. Ark. Kemi. 5, 39 1953Google Scholar
5Aurivillius, B.Fang, P.H.: Ferroelectricity in the compound Ba2Bi4Ti5O18. Phys. Rev. 126, 893 1962Google Scholar
6Ruddlesden, S.N.Popper, P.: New compounds of the K2NiF4type. Acta Crystallogr. 10, 538 1957Google Scholar
7Ruddlesden, S.N.Popper, P.: The compound Sr3Ti2O7and its structure. Acta Crystallogr. 11, 54 1958CrossRefGoogle Scholar
8Müller-Buschbaum, H.: The crystal chemistry of high-temperature oxide superconductors and materials with related structures. Angew. Chem. Int. Ed. Engl. 28, 1472 1989CrossRefGoogle Scholar
9Bednorz, J.G., Müller, K.A.Takashige, M.: Superconductivity in alkaline earth-substituted La2CuO4−y. Science 236, 73 1987Google Scholar
10Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R.Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413 1994Google Scholar
11Subbarao, E.C.: A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23, 665 1962CrossRefGoogle Scholar
12Ram, R.A. Mohan, Ganapathi, L., Ganguly, P.Rao, C.N.R.: Evolution of three-dimensional character across the Lan +1NinO3n +1homologous series with increase in n. J. Solid State Chem. 63, 139 1986Google Scholar
13Otzschi, K.D., Griend, D.A. Vander, Poppelmeier, K.R., Sinkler, W., Marks, L.D.Mason, T.O.: Close relationships between doping and layering in pure perovskite. Chem. Mater. 10, 2579 1998Google Scholar
14Tian, W., Haeni, J.H., Schlom, D.G., Hutchinson, E., Sheu, B.L., Rosario, M.M., Schiffer, P., Liu, Y., Zurbuchen, M.A.Pan, X.Q.: Epitaxial growth and magnetic properties of the first five members of the layered Srn +1RunO3n +1oxide series. Appl. Phys. Lett. 90, 225071 2007Google Scholar
15Braun, P.B.: The crystal structures of a new group of ferromagnetic compounds. Philips Res. Rep. 12, 491 1957Google Scholar
16Anderson, J.S.Hutchison, J.L.: The study of long-range order in hexagonal barium ferrite layer structures. Contemp. Phys. 16, 443 1975Google Scholar
17Veblen, D.R.: Polysomatism and polysomatic series: A review and applications. Am. Mineral. 76, 801 1991Google Scholar
18Newnham, R.E., Wolfe, R.W.Dorrian, J.F.: Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull. 6, 1029 1971Google Scholar
19Rae, A.D., Thompson, J.G., Withers, R.L.Willis, A.C.: Structure refinement of commensurately modulated bismuth titanate, Bi4Ti3O12. Acta Crystallogr. B 46, 474 1990CrossRefGoogle Scholar
20Shaked, H., Jorgensen, J.D., Chmaissem, O., Ikeda, S.Maeno, Y.: Neutron diffraction study of the structural distortions in Sr3Ru2O7. J. Solid State Chem. 154, 361 2000CrossRefGoogle Scholar
21Crawford, M.K., Harlow, R.L., Marshall, W., Li, Z., Cao, G., Lindstrom, R.L., Huang, Q.Lynn, J.W.: Structure and magnetism of single crystal Sr4Ru3O10: A ferromagnetic triple-layer ruthenate. Phys. Rev. B 65, 214412 2002Google Scholar
22Kiyanagi, R., Tsuda, K., Aso, N., Kimura, H., Noda, Y., Yoshida, Y., Ikeda, S-I.Uwatoko, Y.: Investigations of the structure of single crystal Sr3Ru2O7by neutron and convergent beam electron diffractions. J. Phys. Soc. Jpn. 73, 639 2004Google Scholar
23Zurbuchen, M.A., Schubert, J., Jia, Y., Comstock, D.J., Tian, W., Sherman, V.O., Fong, D., Hawley, M.E., Tagantsev, A.K., Streiffer, S.K.Schlom, D.G.Charge-mediated synthesis of Sr4Bi4Ti7O24. (2007, unpublished).Google Scholar
24Dion, M., Ganne, M.Tournoux, M.: New family of phases MIM2IINb3O10sheet perovskites. Mater. Res. Bull. 16, 1429 1981Google Scholar
25Jacobson, A.J., Lewandowski, J.T.Johnson, J.W.: Ion exchange of the layered perovskite KCa2Nb3O10by protons. J. Less-Common Met. 116, 137 1986Google Scholar
26Gopalakrishnan, J., Bhat, V.Raveau, B.: LaNb2O7: A new series of layered perovskites exhibiting ion exchange and intercalation behavior. Mater. Res. Bull. 22, 413 1987Google Scholar
27Santoro, F., Beech, F., Marezio, M.Cava, R.J.: Crystal chemistry of superconductors: A guide to the tailoring of new compounds. Physica C 156, 693 1988Google Scholar
28Tokura, Y.Arima, T.: New classification method for layered copper oxide compounds and its application to design of new high T csuperconductors. Jpn. J. Appl. Phys. 29, 2388 1990Google Scholar
29Hauck, J.Mika, K.: Structure families of superconducting oxides and interstitial alloys. Supercond. Sci. Technol. 11, 614 1998CrossRefGoogle Scholar
30Udayakumar, K.R.Cormack, A.N.: Non-stoichiometry in alkaline earth excess alkaline earth titanates. J. Amer. Ceram. Soc. 71, C469 1988Google Scholar
31Tian, W., Pan, X.Q., Haeni, J.H.Schlom, D.G.: Transmission-electron-microscopy study ofn= 1–5 Srn +1TinO3n +1epitaxial thin films. J. Mater. Res. 16, 2013 2001CrossRefGoogle Scholar
32Anderson, J.S.Non-stoichiometric and ordered phases: Thermodynamic considerations, in The Chemistry of Extended Defects in Non-metallic Solids: Proceedings of the Institute for Advanced Study on the Chemistry of Extended Defects in Non-metallic Solids, edited by L. Eyring and M. O’Keefe (North-Holland, Amsterdam, The Netherlands, 1970), pp. 1–20.Google Scholar
33Bursill, L.A.The titanium and titanium-chromium oxide systems and swinging shear planes, in Solid State Chemistry: Proceedings of the 5th Materials Research Symposium, edited by R.S. Roth and S.J. Schneider (NBS Special Publication, 364, Gaithersburg, MD, 1972), p. 727.Google Scholar
34Allpress, J.G.: Crystallographic shear in WO3xNb2O5(x= 0.03–0.09). J. Solid State Chem. 4, 173 1972Google Scholar
35Wadsley, A.D.Andersson, S.Crystallographic shear and the niobium oxides and oxide fluorides in the composition regionMXx2.4 <x< 2.7, in Perspectives in Structural Chemistry, Vol. 3, edited by J.D. Dunitz and J.A. Ibers (Wiley, New York, 1970) pp. 1–58.Google Scholar
36Gorbenko, O. Yu, Samoilenkov, S.V., Graboy, I.E.Kaul, A.R.: Epitaxial stabilization of oxides in thin films. Chem. Mater. 14, 4026 2002Google Scholar
37Schlom, D.G., Marshall, A.F., Sizemore, J.T., Chen, Z.J., Eckstein, J.N., Bozovic, I., von Dessonneck, K.E., Harris, J.S.Bravman, J.C.: Molecular-beam epitaxial-growth of layered Bi–Sr–Ca–Cu–O compounds. J. Cryst. Growth 102, 361 1990Google Scholar
38Seshadri, R., Hervieu, M., Martin, C., Maignan, A., Domenges, B., Raveau, B.Fitch, A.N.: Study of the layered magnetoresistive perovskite La1.2Sr1.8Mn2O7by high-resolution electron microscopy and synchrotron x-ray powder diffraction. Chem. Mater. 9, 1778 1997Google Scholar
39Schlom, D.G., Haeni, J.H., Lettieri, J., Theis, C.D., Tian, W., Jiang, J.C.Pan, X.Q.: Oxide nano-engineering using MBE. Mater. Sci. Eng., B 87, 282 2001Google Scholar
40Haeni, J.H., Theis, C.D., Schlom, D.G., Tian, W., Pan, X.Q., Chang, H., Takeuchi, I.Xiang, X.D.: Epitaxial growth of the first five members of the Srn +1TinO3n +1Ruddlesden–Popper homologous series. Appl. Phys. Lett. 78, 3292 2001Google Scholar
41Zurbuchen, M.A., Jia, Y., Knapp, S.K., Carim, A.H., Schlom, D.G., Zou, L-N.Liu, Y.: Suppression of superconductivity by crystallographic defects in epitaxial Sr2RuO4films. Appl. Phys. Lett. 78, 2351 2001Google Scholar
42Zurbuchen, M.A., Schlom, D.G.Streiffer, S.K.: Comment on “High-resolution electron microscopy investigations on stacking faults in SrBi2Ta2O9ferroelectric thin films” [Appl. Phys. Lett. 78, 973 2001]. Appl. Phys. Lett. 79, 887 2001Google Scholar
43Cowley, J.M.: Short-range order and long-range order parameters. Phys. Rev. A 138, 1384 1965Google Scholar
44Allpress, J.G.: The direct observation of structural features and defects in complex oxides by two-dimensional lattice imaging. Mater. Res. Bull. 4, 707 1969Google Scholar
45Allpress, J.G.Sanders, J.V.n-beam lattice images of complex oxides, in Electron Microscopy and Structure of Materials, Proceedings of the Fifth International Materials Symposium, edited by G. Thomas, R.M. Fulrath, and R.M. Fisher (University of California Press, Berkeley, CA, 1972), p. 134CrossRefGoogle Scholar
46Allpress, J.G.The application of electron optical techniques to high temperature materials, in Solid State Chemistry: Proceedings of the 5th Materials Research Symposium, edited by R.S. Roth and S.J. Schneider (NBS Special Publication 364, Gaithersburg, MD, 1972), p. 87Google Scholar
47Hutchison, J.L., Anderson, J.S.Rao, C.N.R.: Electron microscopy of ferroelectric bismuth oxides containing perovskite layers. Proc. R. Soc. London A 355, 301 1977Google Scholar
48Prasad, N.S.Varma, K.B.R.: Structural and dielectric properties of ferroelectric Sr1−xBaxBi2(Nb0.5Ta0.5)2O9and Sr0.5Ba0.5Bi2(Nb1−yTay)2O9ceramics. Mater. Res. Bull. 38, 195 2003CrossRefGoogle Scholar
49Xu, H., Veblen, D.R.Luo, G.: A new commensurate modulated structure in orthoclase. Acta Crystallogr. A 51, 53 1995Google Scholar
50Mannhart, J., Anselmetti, D., Bednorz, J.G., Catana, A., Gerber, C., Muller, K.A.Schlom, D.G.: Correlation betweenJ cand screw dislocation density in sputtered YBa2Cu3O7−δfilms. Z. Phys. B 86, 177 1992Google Scholar
51Dam, B., Huijbregtse, J.M., Klaassen, F.C., van der Geest, R.C.F., Doornbos, G., Rector, J.H., Testa, A.M., Freisem, S., Martinez, J.C., Stäuble-Pümpin, B.Griessen, R.: Origin of critical currents in YBa2Cu3O7−δsuperconducting thin films. Nature 399, 439 1999Google Scholar
52Lairson, B.M., Streiffer, S.K.Bravman, J.C.: Vortex pinning and twin boundaries in YBa2Cu3O7−δthin films. Phys. Rev. B 42, 10067 1990Google Scholar
53Rijnders, G., Currás, S., Huijben, M., Blank, D.H.Rogalla, H.: Influence of substrate-film interface engineering on the superconducting properties of YBa2Cu3O7−δ. Appl. Phys. Lett. 84, 1150 2004CrossRefGoogle Scholar
54Zurbuchen, M.A., Asayama, G., Schlom, D.G.Streiffer, S.K.: Ferroelectric domain structure of SrBi2Nb2O9epitaxial thin films. Phys. Rev. Lett. 88, 107601 2002CrossRefGoogle ScholarPubMed
55Zurbuchen, M.A., Lettieri, J., Fulk, S.J., Jia, Y., Carim, A.H., Schlom, D.G.Streiffer, S.K.: Bismuth volatility effects on the perfection of SrBi2Nb2O9and SrBi2Ta2O9films. Appl. Phys. Lett. 82, 4711 2003Google Scholar
56Chu, M-W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M.Gösele, U.: Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87 2004Google Scholar
57Boulle, A., Guinebretiere, R.Dauger, A.: Highly localized strain fields due to planar defects in epitaxial SrBi2Nb2O9. J. Appl. Phys. 97, 073503 2005Google Scholar
58Jiang, Q.D.Zegenhagen, J.: SrTiO3(001) surfaces and growth of ultrathin GdBa2Cu3O7−xfilms studied by LEED/AES and UHV-STM. Surf. Sci. 338, L882 1995CrossRefGoogle Scholar
59Haage, T., Zegenhagen, J., Habermeier, H-U.Cardona, M.: Nucleation mechanism of YBa2Bu3O7−δon SrTiO3(001). Phys. Rev. Lett. 80, 4225 1998Google Scholar
60Bals, S., Rijnders, G., Blank, D.H.A.Van Tendeloo, G.: TEM of ultra-thin DyBa2Cu3O7−xfilms deposited on TiO2-terminated SrTiO3. Physica C 355, 225 2001CrossRefGoogle Scholar
61Wen, J.G., Traeholt, C.Zandbergen, H.W.: Stacking sequence of YBa2Cu3O7thin film on SrTiO3substrate. Physica C 205, 354 1993Google Scholar
62Zandbergen, H.W., Connolly, E., Graboy, I.E., Svetchnikov, V.L.Kaul, A.R.: HREM characterisation of interfaces in YBa2Cu3O7−δ/CeO2/R-Al2O3structures. Physica C 329, 37 2000Google Scholar
63Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E.Brown, G.W.: The influence of vicinal SrTiO3surfaces on the growth and ferroelectric properties of epitaxial Bi4Ti3O12thin films. Mater. Sci. Eng., B 56, 228 1998Google Scholar
64Pan, X.Q., Jiang, J.C., Theis, C.D.Schlom, D.G.: Domain structure of epitaxial Bi4Ti3O12thin films grown on (001) SrTiO3. Appl. Phys. Lett. 83, 2315 2003Google Scholar
65Hesse, D., Zakharov, N.D., Pignolet, A., James, A.R.Senz, S.: TEM cross-section investigations of epitaxial Ba2Bi4Ti5O18thin films on LaNiO3bottom electrodes on CeO2/YSZ-buffered Si(100). Cryst. Res. Technol. 35, 641 2000Google Scholar
66Zurbuchen, M.A., Lettieri, J., Jia, Y., Carim, A.H., Streiffer, S.K.Schlom, D.G.Out-of-phase boundary (OPB) nucleation in layered oxides, in Ferroelectric Thin Films XIIIedited by R. Ramesh, J-P. Maria, M. Alexe, and V. Joshi (Mater. Res. Soc. Symp. Proc. 902E,Warrendale, PA, 2006), T10-55.1Google Scholar
67Takahashi, K., Suzuki, M., Yoshimoto, M.Funakubo, H.: Growth behavior of c-axis oriented epitaxial SrBi2Ta2O9films on SrTiO3substrates with atomic scale step structure. Jpn. J. Appl. Phys. 45, L138 2006CrossRefGoogle Scholar
68Ramesh, R., Inam, A., Hwang, D.M., Ravi, T.S., Sands, T., Xi, X.X., Wu, X.D., Li, Q., Venkatesan, T.Kilaas, R.: The atomic structure of growth interfaces in Y–Ba–Cu–O thin films. J. Mater. Res. 6, 2264 1991CrossRefGoogle Scholar
69McIntyre, P.C., Cima, M.J.Roshko, A.: The effects of substrate surface steps on the microstructure of epitaxial Ba2YCu3O7−xthin films on (001) LaAlO3. J. Cryst. Growth 149, 64 1995Google Scholar
70Gorbenko, O.Y., Graboy, I.E., Kaul, A.R.Zandbergen, H.W.: HREM and XRD characterization of epitaxial perovskite manganites. J. Magn. Magn. Mater. 211, 97 2000Google Scholar
71Salluzzo, M., Aruta, C., Maggio-Aprile, I., Fischer, Ø., Bals, S.Zegenhagen, J.: Growth ofR 1+xBa2-xCu3O7−δepitaxial films investigated by in situ scanning tunneling microscopy. Phys. Status Solidi A 186, 339 2001Google Scholar
72Bals, S., Van Tendeloo, G., Salluzzo, M.Maggio-Aprile, I.: Why are sputter deposited Nd1+xBa2−xCu3O7-deltathin films flatter than NdBa2Cu3O7−δfilms? Appl. Phys. Lett. 79, 3660 2001CrossRefGoogle Scholar
73Tietz, L.A., Carter, C.B., Lanthrop, D.K., Russek, S.E., Burnham, R.A.Michael, J.R.: Crystallography of YBa2Cu3O6+xthin film-substrate interfaces. J. Mater. Res. 4, 1072 1989Google Scholar
74Zurbuchen, M.A., Jia, Y., Knapp, S., Carim, A.H., Schlom, D.G.Pan, X.Q.: Defect generation by preferred nucleation in epitaxial Sr2RuO4/ LaAlO3. Appl. Phys. Lett. 83, 3891 2003Google Scholar
75Zurbuchen, M.A., Lettieri, J., Jia, Y., Schlom, D.G., Streiffer, S.K.Hawley, M.E.: Transmission-electron-microscopy study of (103)-oriented epitaxial SrBi2Nb2O9films grown on (111) SrTiO3and (111) SrRuO3/ (111) SrTiO3. J. Mater. Res. 16, 489 2001Google Scholar
76Madhavan, S., Schlom, D.G., Dabkowski, A., Dabkowska, H.A.Liu, Y.: Growth of epitaxial a-axis andc-axis oriented Sr2RuO4films.Appl. Phys. Lett. 68, 559 1996Google Scholar
77Liu, Y., Mitchell, J.A., Madhavan, S., Schlom, D.G., Dabkowski, A.Dabkowska, H.A.: Electrical transport studies of epitaxial Sr2RuO4films. Czech. J. Phys. 46, 1113 1996Google Scholar
78Schlom, D.G., Jia, Y., Zou, L-N., Haeni, J.H., Briczinski, S., Zurbuchen, M.A., Leitz, C.W., Madhavan, S., Wozniak, S., Liu, Y., Hawley, M.E., Brown, G.W., Dabkowski, A., Dabkowska, H.A., Uecker, R.Reiche, P.Searching for superconductivity in epitaxial films of copper-free layered oxides with the K2NiF4structure, in Superconducting and Related Oxides: Physics and Nanoengineering IIIedited by D. Pavuna and I. Bozovic (SPIE Vol.3481, Bellingham, WA, 1998), 226240Google Scholar
79Lettieri, J., Jia, Y., Fulk, S.J., Schlom, D.G., Hawley, M.E.Brown, G.W.: Optimization of the growth of epitaxial SrBi2Ta2O9thin films by pulsed laser deposition. Thin Solid Films 379, 64 2000Google Scholar
80Clark, J.C., Maria, J-P., Hubbard, K.J.Schlom, D.G.: An oxygen-compatible radiant substrate heater for thin film growth at substrate temperatures up to 1050 degrees C. Rev. Sci. Instrum. 68, 2538 1997Google Scholar
81Hÿtch, M.J., Snoeck, E.Kilaas, R.: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131 1998Google Scholar
82Ramesh, R., Hwang, D.M., Barner, J.B., Nazar, L., Ravi, T.S., Inam, A., Dutta, B., Wu, X.D.Venkatesan, T.: Defect structure of laser deposited Y–Ba–Cu–O thin films on single crystal MgO substrate. J. Mater. Res. 5, 704 1990Google Scholar
83Suzuki, T., Nishi, Y., Fujimoto, M., Ishikawa, K.Funakubo, H.: Interface and defect structures of (001)-oriented SrBi2Ta2O9thin film epitaxially grown on (001) SrTiO3single crystal. Jpn. J. Appl. Phys., Part 2 38, L1261 1999Google Scholar
84Suzuki, T., Nishi, Y., Fujimoto, M., Ishikawa, K.Funakubo, H.: Interface and domain structures of (116)-oriented SrBi2Ta2O9thin film epitaxially grown on (110) SrTiO3single crystal. Jpn. J. Appl. Phys., Part 2 38, L1265 1999CrossRefGoogle Scholar
85Choi, J.H., Lee, J.Y.Kim, Y.T.: High-resolution transmission-electron-microscopy study on the solid-phase crystallization of amorphous SrBi2Ta2O9thin films on Si. J. Cryst. Growth 223, 161 2001Google Scholar
86Eibl, O.: Crystal defects in Bi2Sr2Can −1CunO4+2n ceramics. Physica C 168, 249 1990Google Scholar
87Ramesh, R., Inam, A., Wilkens, B., Chan, W.K., Sands, T., Fork, D.K., Geballe, T.H., Evans, J.Bullington, J.: Ferroelectric bismuth titanate/superconductor (Y–Ba–Cu–O) thin-film heterostructures on silicon. Appl. Phys. Lett. 59, 1782 1991Google Scholar
88Ramesh, R., Luther, K., Wilkens, B., Hart, D.L., Wang, E., Tarascon, J.M., Inam, A., Wu, X.D.Venkatesan, T.: Epitaxial growth of ferroelectric bismuth titanate thin films by pulsed laser deposition. Appl. Phys. Lett. 57, 1505 1990Google Scholar
89Horiuchi, S., Kikuchi, T.Goto, M.: Structure determination of a mixed-layer bismuth titanate, Bi7Ti4NbO21, by super-high-resolution electron microscopy. Acta Crystallogr. A 33, 701 1977Google Scholar
90Chu, M-W., Ganne, M., Caldes, M.T.Brohan, L.: X-ray photoelectron spectroscopy and high resolution electron microscopy studies of Aurivillius compounds: Bi4−xLaxTi3O12(x= 0, 0.5, 0.75, 1.0, 1.5, and 2.0). J. Appl. Phys. 91, 3178 2002Google Scholar
91Gilloux-Viry, M., Duclere, J-R., Perrin, A., Laval, J-Y.Dubon, A.: Evidence of intergrowth in SrBi2Nb2O9(SBN) thin films grown by PLD on (100) SrTiO3in relation with the composition. Appl. Surf. Sci. 186, 391 2002Google Scholar
92Zurbuchen, M.A.Transmission electron microscopy investigation of defects and domains in epitaxial films of Aurivillius and Ruddlesden–Popper phases, Ph.D. Dissertation, The Pennsylvania State University, University Park, PA(2002).Google Scholar
93Warren, B.E.: X-ray Diffraction Addison-Wesley Menlo Park 1969 216227Google Scholar
94Malachias, A., Schülli, T.U., Medeiros-Ribeiro, G., Cançado, L.G., Stoffel, M., Schmidt, O.G., Metzger, T.H.Magalhaes-Paniago, R.: X-ray study of atomic ordering in self-assembled Ge islands grown on Si(001). Phys. Rev. B 72, 165315 2005Google Scholar
95Tabata, H., Tanaka, H.Kawai, T.: Formation of Bi-based layered perovskite oxide films by a laser ablation technique. Jpn. J. Appl. Phys., Part 1 34, 5146 1995CrossRefGoogle Scholar
96Ishikawa, K., Nukaga, N.Funakubo, H.: Metalorganic chemical vapor deposition of epitaxial SrBi2Ta2O9thin films and their crystal structure. Jpn. J. Appl. Phys., Part 2 38, L258 1999Google Scholar
97Saito, K., Ishikawa, K., Saiki, A., Yamaji, I., Akai, T.Funakubo, H.: Residual strain analysis of epitaxial grown SBT thin films prepared by MOCVD. Integr. Ferroelectrics 33, 59 2001CrossRefGoogle Scholar
98Song, T.K., Lee, J-K.Jung, H.J.: Structural and ferroelectric properties of thec-axis oriented SrBi2Ta2O9thin films deposited by the radio-frequency magnetron sputtering. Appl. Phys. Lett. 69, 3839 1996Google Scholar
99Ishikawa, K.Funakubo, H.: Electrical properties of (001)- and (116)-oriented epitaxial SrBi2Ta2O9thin films prepared by metalorganic chemical vapor deposition. Appl. Phys. Lett. 75, 1970 1999CrossRefGoogle Scholar
100Lee, H.N., Senz, S., Zakharov, N.D., Harnagea, C., Pignolet, A., Hesse, D.Gösele, U.: Growth and characterization of non-coriented epitaxial ferroelectric SrBi2Ta2O9films on buffered Si(100). Appl. Phys. Lett. 77, 3260 2000Google Scholar
101Lettieri, J., Zurbuchen, M.A., Jia, Y., Schlom, D.G., Streiffer, S.K.Hawley, M.E.: Epitaxial growth of SrBi2Nb2O9on (110) SrTiO3and the establishment of a lower bound on the spontaneous polarization of SrBi2Nb2O9. Appl. Phys. Lett. 77, 3090 2000Google Scholar
102Lee, H.N., Visinoiu, A., Senz, S., Harnagea, C., Pignolet, A., Hesse, D.Gösele, U.: Epitaxial growth of non-c-oriented ferroelectric SrBi2Ta2O9thin films on Si(100) substrates. J. Appl. Phys., Part 1 88, 6658 2000Google Scholar
103Ishikawa, K., Funakubo, H., Saito, K., Suzuki, T., Nishi, Y.Fujimoto, M.: Crystal structure and electrical properties of epitaxial SrBi2Ta2O9films. J. Appl. Phys. 87, 8018 2000Google Scholar
104Kong, G., Jones, M.O., Abell, J.S., Edwards, P.P., Lees, S.T., Gibbons, K.E., Gameson, I.Aindow, M.: Microstructure of laser-ablated superconducting La2CuO4Fxthin films on SrTiO3. J. Mater. Res. 16, 3309 2001Google Scholar
105Takeuchi, T., Tani, T.Satoh, T.: Microcomposite particles Sr3Ti2O7–SrTiO3with an epitaxial core-shell structure. Solid State Ionics 108, 67 1998Google Scholar
106Tilley, R.J.D.: An electron microscope study of perovskite-related oxides in the Sr–Ti–O system. J. Solid State Chem. 21, 293 1977CrossRefGoogle Scholar
107Williams, T., Lichtengerg, F., Reller, A.Bednorz, G.: New layered perovskites in the Sr-Ru-O system: A transmission electron microscope study. Mater. Res. Bull. 26, 763 1991Google Scholar
108Hawkins, K.White, T.J.: Defect structure and chemistry of (CaxSr1−x)n +1TinO3n +1layer perovskites. Philos. Trans. R. Soc. London, Sec. A. 336, 541 1991Google Scholar
109Ceh, M., Krasevec, V.Kolar, D.: A transmission electron microscope study of SrO-doped CaTiO3. J. Solid State Chem. 103, 263 1993Google Scholar
110Seshadri, R., Hervieu, M., Martin, C., Maignan, A., Domenges, B.Raveau, B.: Study of the layered magnetostrictive perovskite La1.2Sr1.8Mn2O7by high-resolution electron microscopy and synchrotron x-ray powder diffraction. Chem. Mater. 9, 1778 1997Google Scholar
111McCoy, M.A., Grimes, R.W.Lee, W.E.: Phase stability and interfacial structures in the SrO–SrTiO3system. Philos. Mag. A 75, 833 1997Google Scholar
112Sloan, J., Battle, P.D., Green, M.A., Rosseinsky, M.J.Vente, J.F.: A HRTEM study of the Ruddlesden–Popper compositions Sr2LnMn2O7(Ln= Y, La, Nd, Eu, Ho). J. Solid State Chem. 138, 135 1998Google Scholar
113Fujimoto, M., Tanaka, J.Shirasaki, S.: Planar faults and grain boundary precipitation in non-stoichiometric (Sr,Ca)TiO3ceramics. Jpn. J. Appl. Phys. 27, 1162 1988Google Scholar
114Ceh, M.Kolar, D.: Solubility of CaO in CaTiO3. J. Mater. Sci. 29, 6295 1994Google Scholar
115Rühle, M., Recnik, A.Ceh, M.Chemistry and structure of internal interfaces in inorganic materials, in Solid-State Chemistry of Inorganic Materials, edited by P.K. Davies, A.J. Jacobson, C.C. Torardi, and T.A. Vanderah (Mater. Res. Soc. Symp. Proc.453, Pittsburgh, PA, 1997), p. 673.Google Scholar
116Fujimoto, M., Suzuki, T., Nishi, Y.Arai, K.: Calcium-ion selective site occupation at Ruddlesden–Popper-type faults and the resultant dielectric properties ofA-site-excess strontium-calcium titanate ceramics. J. Am. Ceram. Soc. 81, 33 1998Google Scholar
117Suzuki, T., Nishi, Y.Fujimoto, M.: Defect structure in homoepitaxial non-stoichiometric strontium titanate thin films. Philos. Mag. A 80, 621 2000Google Scholar
118Rao, C.N.R.Raveau, B.: Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 2nd ed. (Wiley, New York, 1998), p. 61Google Scholar
119Dinu, R., Dinescu, M., Pedarnig, J.D., Gunasekaran, R.A., Bäuerle, D., Bauer-Gogonea, S.Bauer, S.: Film structure and ferroelectric properties of in situ grown SrBi2Ta2O9films. Appl. Phys. A 69, 55 1999Google Scholar
120Park, Y-B., Jang, S-M., Lee, J-K.Park, J-W.: Influence of second phases on the ferroelectric properties of SrBi2TaNbO9thin films fabricated by radio-frequency magnetron sputtering. J. Vac. Sci. Technol. A 18, 17 2000CrossRefGoogle Scholar
121Cowley, J.M.: The Chemistry of Extended Defects in Non-metallic Solids: Proceedings of the Institute for Advanced Study on the Chemistry of Extended Defects in Non-Metallic Solids, April, 1969edited by L. Eyring and M. O’Keefe (North-Holland, Amsterdam, The Netherlands, 1970), p. 259.Google Scholar
122Ding, Y., Liu, J.S., Zhu, J.S.Wang, Y.N.: Stacking faults and their effects on ferroelectric properties in strontium bismuth tantalate. J. Appl. Phys. 91, 2255 2002Google Scholar
123Yan, Y., Al-Jassim, M.M., Xu, Z., Lu, X., Viehland, D., Payne, M.Pennycook, S.J.: Structure determination of a planar defect in SrBi2Ta2O9. Appl. Phys. Lett. 75, 1961 1999Google Scholar
124Boulle, A., Legrand, C., Guinebretiere, R., Mercurio, J.P.Dauger, A.: Planar faults in Aurivillius compounds: An x-ray diffraction study. Philos. Mag. A 82, 615 2002Google Scholar
125Barin, I.: Thermochemical Data of Pure Substances3rd ed. (John Wiley and Sons, Hoboken, NJ, 1995).Google Scholar
126Frank, F.C.: The growth of carborundum: Dislocations and polytypism. Philos. Mag. 42, 1014 1954Google Scholar
127Zurbuchen, M.A., Schubert, J., Jia, Y., Comstock, D.J., Tian, W., Fong, D., Hawley, M.E., Streiffer, S.K.Schlom, D.G.Electron microscopy study of (Sr4Bi4)Ti7O24. (2006, unpublished)Google Scholar
128Strunk, H.P.: Edge dislocation may cause growth spirals. J. Cryst. Growth 160, 184 1996Google Scholar
129Fisher, J.C., Fullman, R.L.Sears, G.W.: The relation of the disordering of a superlattice to the melting of the disordered alloy. Acta Metall. 2, 344 1954Google Scholar
130Lemmlein, G.G.Dukova, E.D.: Formation of screw dislocations in the growth process of a crystal. Sov. Phys. Crystallogr. 1, 269 1956Google Scholar
131Kozlovskii, M.I.: Formation of screw dislocations in the growth of a crystal around solid particles. Sov. Phys. Crystallogr. 3, 2006 1958Google Scholar
132Kozlovskii, M.I.: Formation of screw dislocations at the junction of two layers spreading over the surface of a crystal. Sov. Phys. Crystallogr. 3, 236 1958Google Scholar
133Baronnet, A.: Sur les origines des dislocations vis et des spirales de croissance dans les micas (On the origin of screw dislocations and growth spirals in micas). J. Cryst. Growth 19, 193 1973Google Scholar
134Gatoh, Y.Komatsu, H.: On the origin of growth spirals having large step heights. J. Cryst. Growth 54, 163 1981Google Scholar
135Schlom, D.G., Anselmetti, D., Bednorz, J.G., Gerber, C.Mannhart, J.: Epitaxial growth of cuprate superconductors from the gas phase. J. Cryst. Growth 137, 259 1994Google Scholar
136Allpress, J.G., Sanders, J.V.Wadsley, A.D.: Electron microscopy of high-temperature Nb2O5and related phases. Phys. Status Solidi 25, 541 1968Google Scholar
137Pérez, O., Leligny, H., Baldinozzi, G., Grebille, D., Hervieu, M., Labbé, P., Groult, D.Graafsma, H.: Crystal structure of double-collapsed-phase Bi6+xSr9−xFe5O26and its relation to modulated-phase Bi2Sr2CaCu2O8+δ. Phys. Rev. B 56, 5662 1997Google Scholar
138Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M.Koinuma, H.: Atomic control of the SrTiO3crystal interface. Science 266, 1540 1994Google Scholar
139Koster, G., Kropman, B.L., Rijnders, G.J.H.M., Blank, D.H.A.Rogalla, H.: Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920 1998Google Scholar
140Zakharov, N.D., Hesse, D., Nouvertné, F., Auge, J., Hoffschulz, H., Dreßen, J., Roskos, H.G., Kurz, H.Güntherodt, G.: Surface topography and bulk structure of Bi2Sr2CaCu2O8+δfilms observed by scanning tunneling microscopy and high-resolution transmission electron microscopy. Physica C 245, 84 1995Google Scholar
141Wu, J.S., Jia, C.L., Urban, K., Hao, J.H.Xi, X.X.: A new mechanism for misfit dislocation generation: Superdislocations associated with Ruddlesden–Popper planar defects. J. Cryst. Growth 234, 603 2002Google Scholar