Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T00:33:25.823Z Has data issue: false hasContentIssue false

Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation

Published online by Cambridge University Press:  25 May 2018

Zengying Zhao*
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, China
Mingchao Feng
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, China
Zhijian Peng
Affiliation:
School of Science, China University of Geosciences, Beijing 100083, China
Hongwei Huang*
Affiliation:
School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Zhanhu Guo*
Affiliation:
Chemical and Biomolecular Engineering Department, University of Tennessee, Knoxville, Tennessee 37996, USA
Zhaohui Li
Affiliation:
Geosciences Department, University of Wisconsin – Parkside, Kenosha, Wisconsin 53144, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Single-crystal-like TiO2 is claimed to be a very promising material among various catalysts. In this study, the (N,F)-co-doped single-crystal-like TiO2 was prepared by a new molten mixing process in which the mixed nitrates were used both as a morphology modifier and an N-doping agent at the same time. The prepared samples also had well-developed (001) facet due to the addition of HF. The HF can also be an F doping agent to the material. The co-doping of N and F can diminish the band gap of TiO2 from 3.05 to 2.93 eV, therefore visible light can be used effectively by the material. In addition, NO and fluorine ions existing on the surface of the sample can also help its photocatalyticity. Therefore, the photocatalytic performance of the as-prepared sample was effectively improved.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K.: Electrochemical photocatalysis of water at semiconductor electrode. Nature 238, 3738 (1972).CrossRefGoogle Scholar
Carey, J.H., Lawrence, J., and Tosine, H.M.: Photodechlorination of PCB’S in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 16, 697 (1976).CrossRefGoogle ScholarPubMed
Frank, S.N. and Bard, A.J.: Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 81, 1484 (1977).CrossRefGoogle Scholar
Perez, E., Vittorio, L., Torres, M.F., Sham, E., and Pérez, E.: Nitrogen doped TiO2 photoactive in visible light. Mater.-Rio De Janeiro 20, 561 (2015).Google Scholar
Primo, A. and Garcia, H.: Solar photocatalysis for environment remediation. New Future Dev. Catal. 6, 145 (2013).Google Scholar
Fujishima, A. and Zhang, X.: Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 9, 750 (2006).CrossRefGoogle Scholar
Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. Chem. 1, 1 (2000).CrossRefGoogle Scholar
Varghese, O.K., Paulose, M., La Tempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).CrossRefGoogle ScholarPubMed
Yu, J., Wang, Y., and Xiao, W.: Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. J. Mater. Chem. A 1, 10727 (2013).CrossRefGoogle Scholar
Yang, J., Zhang, X., Li, B., Liu, H., Sun, P., Wang, C., Wang, L., and Liu, Y.: Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. J. Alloys Compd. 584, 180 (2014).CrossRefGoogle Scholar
Qiu, B., Xing, M., and Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136, 5852 (2014).CrossRefGoogle ScholarPubMed
Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., and Gole, J.: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003).CrossRefGoogle Scholar
Huang, H.W., Li, X.W., Wang, J., Dong, F., Chu, P.K., Zhang, T., and Zhang, Y.H.: Anionic group self-doping as a promising strategy: Band-gap engineering and multi-functional applications of high-performance CO32-doped Bi2O2CO3. ACS Catal. 5, 4094 (2015).CrossRefGoogle Scholar
Mesgari, Z. and Saien, J.: Pollutant degradation over dye sensitized nitrogen doped titanium substances in different configurations of visible light helical flow photoreactor. Sep. Purif. Technol. 185, 129 (2017).CrossRefGoogle Scholar
Xiang, Q.J., Yu, J.G., and Jaroniec, M.: Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 47, 4532 (2011).CrossRefGoogle ScholarPubMed
Lai, Z.C., Peng, F., Wang, Y., Wang, H., Yu, H., Liub, P., and Zhao, H.: Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces. J. Mater. Chem. 22, 23906 (2012).CrossRefGoogle Scholar
Sun, L., Zhao, Z., Zhou, Y., and Liu, L.: Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4, 613 (2012).CrossRefGoogle ScholarPubMed
Zhang, J., Zhang, L., Shi, Y., Xu, G., Zhang, E., Wang, H., Kong, Z., Xi, J., and Ji, Z.: Anatase TiO2 nanosheets with coexposed {101} and {001} facets coupled with ultrathin SnS2 nanosheets as a face-to-face n–p–n dual heterojunction photocatalyst for enhancing photocatalytic activity. Appl. Surf. Sci. 420, 839 (2017).CrossRefGoogle Scholar
Cao, Y., Zong, L., Li, Q., Li, C., Li, J., and Yang, J.: Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity. Appl. Surf. Sci. 391, 311 (2017).CrossRefGoogle Scholar
Li, D., Chen, F., Jiang, D., Shi, W., and Zheng, W.: Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets. Appl. Surf. Sci. 390, 689 (2016).CrossRefGoogle Scholar
Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).CrossRefGoogle ScholarPubMed
Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., and Lu, G.Q.: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} faces. J. Am. Chem. Soc. 131, 4078 (2009).CrossRefGoogle Scholar
Alivov, Y. and Fan, Z.Y.: A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high {001} facet percentage. J. Phys. Chem. C 113, 12954 (2009).CrossRefGoogle Scholar
Liu, G., Sun, C.H., Yang, H.G., Smith, S.C., Wang, L., Lu, G.Q., and Cheng, H.M.: Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 46, 755 (2010).CrossRefGoogle ScholarPubMed
Liu, S.W., Yu, G.Y., and Jaroniec, M.: Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatasepolyhedra with exposed {001} facets. J. Am. Chem. Soc. 132, 11914 (2010).CrossRefGoogle ScholarPubMed
Zhang, Q.F., Dandeneau, C.S., Zhou, X.Y., and Cao, G.Z.: ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087 (2009).CrossRefGoogle Scholar
Chen, J.S., Tan, Y.L., Li, C.M., Cheah, Y.L., Luan, D., Madhavi, S., Boey, F.Y., Archer, L.A., and Lou, X.W.: Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 132, 6124 (2010).CrossRefGoogle ScholarPubMed
Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., and Yang, S.: Mesoporous TiO2 single crystals: Facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance. ACS Appl. Mater. Interfaces 5, 11249 (2013).CrossRefGoogle ScholarPubMed
Sivaram, V., Crossland, E.J.W., Leijtens, T., Noel, N.K., Alexander-Webber, J., Docampo, P., and Snaith, H.J.: Observation of annealing-induced doping in TiO2 mesoporous single crystals for use in solid state dye sensitized solar cells. J. Phys. Chem. C 118, 1821 (2014).CrossRefGoogle Scholar
Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., and Zhou, Y.: A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl. Mater. Interfaces 7, 25716 (2015).CrossRefGoogle ScholarPubMed
Li, C.X., Zhao, Z.Y., Lomboleni, H.S., Huang, H.W., and Peng, Z.J.: Enhanced visible photocatalytic activity of nitrogen doped single crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).CrossRefGoogle Scholar
Yu, H., Shi, R., Zhao, Y., Bian, T., Zhao, Y., Zhou, C., Waterhouse, G.I.N., Wu, L., Tung, C., and Zhang, T.: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 16051481605156 (2017).CrossRefGoogle ScholarPubMed
Zhao, Y., Zhao, B., Liu, J., Chen, G., Gao, R., Yao, S., Li, M., Zhang, Q., Gu, L., Xie, J., Wen, X., Wu, L., Tung, C., Ma, D., and Zhang, T.: Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light. Angew. Chem. Int. Ed. 55, 4215 (2016).CrossRefGoogle ScholarPubMed
Zhao, Y., Chen, G., Bian, T., Zhou, C., Waterhouse, G.I.N., Wu, L., Tung, C., Smith, L.J., O’Hare, D., and Zhang, T.: Defect-rich ultrathin znal-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7824 (2015).CrossRefGoogle ScholarPubMed
Zheng, L., Yu, X., Long, M., and Li, Q.: Humic acid-mediated visible-light degradation of phenol on phosphate-modified and Nafion-modified TiO2 surfaces. Chin. J. Catal. 38, 2076 (2017).CrossRefGoogle Scholar
Huang, H.W., Xiao, K., He, Y., Zhang, T., Dong, F., Du, X., and Zhang, Y.H.: In situ assembly of BiOI@Bi12O17Cl2 p–n junction: Charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl. Catal. B Environ. 199, 75 (2016).CrossRefGoogle Scholar
Huang, H.W., He, Y., Li, X., Li, M., Zeng, C., Dong, F., Du, X., Zhang, T., and Zhang, Y.H.: Bi2O2(OH)(NO3) as a desirable [Bi2O2](2+) layered photocatalyst: Strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. J. Mater. Chem. A 3, 24547 (2015).CrossRefGoogle Scholar
Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).CrossRefGoogle Scholar
Cheng, X., Yu, X., Xing, Z., and Yang, L.: Enhanced visible light photocatalytic activity of mesoporous anatase TiO2 codoped with nitrogen and chlorine. Int. J. Photoenergy 2012, 1 (2012).Google Scholar
Wang, X., Shen, S., Feng, Z., and Li, C.: Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chin. J. Catal. 37, 2059 (2016).CrossRefGoogle Scholar
Kassahun, S.K., Kiflie, Z., Shin, D.W., Park, S.S., Jung, W.Y., and Chung, Y.R.: Facile low temperature immobilization of N-doped TiO2 prepared by sol–gel method. J. Sol-Gel Sci. Technol. 83, 698 (2017).CrossRefGoogle Scholar
Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., Patil, S.I., Kale, B.B., and Ogale, S.B.: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J. Phys. Chem. C 112, 14595 (2008).CrossRefGoogle Scholar
Naik, B., Moon, S.Y., Kim, S.H., and Park, J.Y.: Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Appl. Surf. Sci. 354, 347 (2015).CrossRefGoogle Scholar
Jyothi, M.S., Souza Laveena, P.D., Shwetharani, R., and Balakrishna, G.R.: Novel hydrothermal method for effective doping of N and F into nano titania for both, energy and environmental applications. Mater. Res. Bull. 74, 478 (2016).CrossRefGoogle Scholar
Huang, H.W., Liu, K., Chen, K., Zhang, Y.L., Zhang, Y.H., and Wang, S.C.: Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118, 14379 (2014).CrossRefGoogle Scholar
Han, X.G., Kuang, Q., Jin, M.S., Xie, Z., and Zheng, L.: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009).CrossRefGoogle ScholarPubMed
Wang, Z.Y., Lv, K.L., Wang, G.H., Deng, K., and Tang, D.: Study on the shape control and photocatalytic activity of high-energy anatase titania. Appl. Catal., B 100, 378 (2011).CrossRefGoogle Scholar
Liu, Y., Tian, L., Tan, X., Li, X., and Chen, X.: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).CrossRefGoogle Scholar
Li, F., Han, T., Wang, H., Zheng, X., Wan, J., and Ni, B.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).CrossRefGoogle Scholar
Shet, S., Ahn, K., Deutsch, T., Wang, H.L., Ravindra, N., Yan, Y.F., Turner, J., and Al-Jassim, M.: Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. J. Mater. Res. 25, 69 (2010).CrossRefGoogle Scholar
Prochazka, J., Kavan, L., Zukalova, M., Janda, P., Jirkovsky, J., Zivcova, Z.V., Poruba, A., Bedu, M., Döbbelin, M., and Tena-Zaera, R.: Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates. J. Mater. Res. 28, 385 (2013).CrossRefGoogle Scholar
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).CrossRefGoogle Scholar
Ishibashi, K.I., Fujishima, A., Watanabe, T., and Hashimoto, K.: Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2, 207 (2000).CrossRefGoogle Scholar
Zhu, J., Wang, S., Bian, Z., Xie, S., Cai, C., Wang, J., Yang, H., and Li, H.: Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity. CrystEngComm 12, 2219 (2010).CrossRefGoogle Scholar
Yu, J.G., Dai, G.P., Xiang, Q.J., and Jaroniec, M.: Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 21, 1049 (2011).CrossRefGoogle Scholar
Huang, H.W., Cao, R.R., Yu, S., Xu, K., Hao, W., Wang, Y., Dong, F., Zhang, T., and Zhang, Y.H.: Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl. Catal. B Environ. 219, 526 (2017).CrossRefGoogle Scholar
Huang, H.W., Xiao, K., Zhang, T., Dong, F., and Zhang, Y.H.: Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl. Catal. B Environ. 203, 879 (2017).CrossRefGoogle Scholar
Xie, J., Bian, L., Yao, L., Hao, Y.J., and Wei, Y.: Simple fabrication of mesoporous TiO2 microspheres for photocatalytic degradation of pentachlorophenol. Mater. Lett. 91, 213 (2013).CrossRefGoogle Scholar
Huang, H.W., Han, X., Li, X., Wang, S., Chu, P.K., and Zhang, Y.H.: Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOl full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 7, 482 (2015).CrossRefGoogle ScholarPubMed
Selvam, K., Balachandran, S., Velmurugan, R., and Swaminathan, M.: Mesoporous nitrogen doped nano titania—A green photocatalyst for the effective reductive cleavage of azoxy benzenes to amines or 2-phenyl indazoles in methanol. Appl. Catal., A 413, 213 (2012).CrossRefGoogle Scholar
Yan, Y., Chen, T., Zou, Y., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).CrossRefGoogle Scholar
Qi, K., Cheng, B., Yu, J., and Ho, W.: A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936 (2017).CrossRefGoogle Scholar
Valentin, C.D., Finazzi, E., and Pacchioni, G.: Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2. Chem. Mater. 20, 3706 (2008).CrossRefGoogle Scholar
Huang, H.W., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., and Zhang, Y.H.: Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. J. Mater. Chem. A 5, 17452 (2017).CrossRefGoogle Scholar
Wu, F., Li, X., Liu, W., and Zhang, S.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4–RGO–TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).CrossRefGoogle Scholar
Li, X., Xia, T., Xu, C., Murowchick, J., and Chen, X.: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 64 (2014).CrossRefGoogle Scholar
Wu, F., Liu, W., Qiu, J., Li, J., Zhou, W., Fang, Y., Zhang, S., and Li, X.: Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl. Surf. Sci. 358, 425 (2015).CrossRefGoogle Scholar
Huang, H.W., He, Y., Lin, Z., Kang, L., and Zhang, Y.H.: Two novel Bi-based borate photocatalysts: Crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation. J. Phys. Chem. C 117, 22986 (2013).CrossRefGoogle Scholar
Huang, H.W., Tu, S.C., Zeng, C., Zhang, T., Reshak, A.H., and Zhang, Y.H.: Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 56, 11860 (2017).CrossRefGoogle ScholarPubMed
Tian, L., Xu, J., Alnafisah, A., Wang, R., Tan, X., Oyler, N.A., Liu, L., and Chen, X.: A novel green TiO2 photocatalyst with a surface charge-transfer complex of Ti and hydrazine groups. Chem. Eur. J. 23, 5345 (2017).CrossRefGoogle ScholarPubMed
Liu, F., Yan, X., Chen, X., Tian, L., Xia, Q., and Chen, X.: Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243 (2016).CrossRefGoogle Scholar
Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).CrossRefGoogle ScholarPubMed
Cheng, J.Y., Chen, J., Lin, W., Liu, Y.D., and Kong, Y.: Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 332, 573 (2015).CrossRefGoogle Scholar
Zhang, J.L., Wu, Y.M., Xing, M.Y., Leghari, S.A.K., and Sajjad, S.: Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3, 715 (2010).CrossRefGoogle Scholar
Li, X., Liu, H.L., Luo, D.L., Li, J.T., Huang, Y., Li, H.L., Fang, Y.P., Xu, Y.H., and Zhu, L.: Adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 180, 151 (2012).CrossRefGoogle Scholar
Supplementary material: File

Zhao et al. supplementary material

Figures S1-S4

Download Zhao et al. supplementary material(File)
File 727.6 KB