Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T01:09:00.529Z Has data issue: false hasContentIssue false

Microwave-assisted combustion synthesis of Ni powder using urea

Published online by Cambridge University Press:  01 July 2006

Ranjan K. Sahu*
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
A.K. Ray
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
S.K. Das
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
A.J. Kailath
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
L.C. Pathak
Affiliation:
National Metallurgical Laboratory, Jamshedpur 831007, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A novel microwave-assisted combustion method was used to prepare Ni powder. The method involves the combustion reaction of nickel nitrate and urea as a fuel in the microwave field. The initiation of the exothermic peak of the combustion reaction was found to vary as a function of urea content. The microwave-prepared Ni powder was characterized using x-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, thermogravimetric (TG) analysis, differential thermal analysis (DTA), and magnetic measurement. The XRD pattern revealed that the Ni powder crystallizes with the cubic phase when the molar ratio of fuel to nitrate is varied between 5:1 and 6:1. Above or below that molar ratio, NiO phase coexists as an impurity along with the Ni phase. The magnetization value of Ni measured at room temperature is 53.5 Am2/kg, which is close to the value observed for commercial Ni powder (55.0 Am2/kg). The mechanism for the formation of the Ni and NiO phase is discussed based on the infrared, TG, and DTA data. The method shows that highly pure Ni powder can be prepared using urea as a fuel and microwaves as a source of energy via the solution combustion method.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Glavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C.: Borohydride reduction of nickel and copper ions in aqueous and nonaqueous media—Controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir 10, 4726 (1994).CrossRefGoogle Scholar
2.Yin, H., Chow, G.M.: Anomalous electroless polyol deposition of FeNi powders and films. J. Electrochem. Soc. 149, C68 (2002).CrossRefGoogle Scholar
3.Elumalai, P., Vasan, H.N., Verelst, M., Lecante, P., Carles, V., Tailhades, P.: Synthesis and characterization of sub-micron size Co–Ni alloys using malonate as precursor. Mater. Res. Bull. 37, 353 (2002).CrossRefGoogle Scholar
4.Glavee, G.N., Klabunde, K.J., Sorenson, C.M., Hadjipanayis, G.C.: Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media, formation on nanoscale Fe, FeB, Fe2B powders. Inorg. Chem. 34, 28 (1995).CrossRefGoogle Scholar
5.Cordente, N., Respaud, M., Senocq, F., Casanove, M-J., Amiens, C., Chaudret, B.: Synthesis and magnetic properties of nickel nanorods. Nano Lett. 1, 565 (2001).CrossRefGoogle Scholar
6.Xia, B., Lenggoro, I.W., Okuyama, K.: The roles of ammonia and ammonium bicarbonate in preparation of nickel particles from nickel chloride. J. Mater. Res. 15, 2157 (2000).CrossRefGoogle Scholar
7.Suresh, K., Patil, K.C.: A combustion process for the instant synthesis of γ-iron oxide. J. Mater. Sci. Lett. 12, 572 (1993).CrossRefGoogle Scholar
8.Patil, K.C., Aruna, S.T., Ekambaran, S.: Combustion synthesis. Curr. Opin. Solid State Mater. Sci. 2, 158 (1997).CrossRefGoogle Scholar
9.Sekar, M.M. Amala, Manoharan, S. Sundar, Patil, K.C.: Combustion synthesis of fine-particle ceria. J. Mater. Sci. Lett. 9, 1205 (1990).CrossRefGoogle Scholar
10.Hwang, C-C., Tsai, J-S., Huang, T-H., Peng, C-H., Chen, S-Y.: Combustion synthesis of Ni Zn ferrite powder—influence of oxygen balance value. J. Solid State Chem. 178, 382 (2005).CrossRefGoogle Scholar
11.Chung, D.Y., Lee, E.H.: Microwave-induced combustion synthesis of Ce1−xSmxO2−x /2 powder and its characterization. J. Alloys Compd. 374, 69 (2004).CrossRefGoogle Scholar
12.Qiu, Y., Gao, L.: Metal-urea complex—A precursor to metal nitrides. J. Am. Ceram. Soc. 87, 352 (2004).CrossRefGoogle Scholar
13.Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry (Wiley Interscience, New York, 1962).Google Scholar
14.Vaidhyanathan, B., Agarwal, D.K., Roy, R.: Novel synthesis of nitride powders by microwave-assisted combustion. J. Mater. Res. 15, 974 (2000).CrossRefGoogle Scholar
15.Baghurst, D.R., Chippindale, A.M., Mingos, D.M.P.: Microwave syntheses for superconducting ceramics. Nature 332, 311 (1988).CrossRefGoogle Scholar
16.Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1992).CrossRefGoogle Scholar
17.Biamino, S., Badini, C.: Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA–TGA–MS. J. Eur. Ceram. Soc. 24, 3021 (2004).CrossRefGoogle Scholar
18.Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B., Brauer, J.: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta. 424, 131 (2004).CrossRefGoogle Scholar
19.Lowenthal, M.S., Khanna, R.K., Moore, M.H.: Infrared spectrum of solid isocyanic acid (HNCO): Vibrational assignments and integrated band intensities. Spectrochim. Acta A 58, 73 (2002).CrossRefGoogle ScholarPubMed
20.El-Sayed, B.A., Shaaban, S.M., Hassan, A.M., Shabana, A.A.: Temperature dependence of the electrical conductivity of oxamide, dithio-oxamide and biuret. Mater. Lett. 27, 65 (1996).CrossRefGoogle Scholar
21.Penland, R.B., Mizushima, S., Curran, C., Quagliano, J.V.: Infrared absorption spectra of inorganic coördination complexes. X. Studies of some metal-urea complexes. J. Am. Chem. Soc. 79, 1575 (1957).CrossRefGoogle Scholar
22.Peng, J-H., Binner, J., Bradshaw, S.: Microwave initiated self-propagating high temperature synthesis of materials. Mater. Sci. Technol. 18, 1419 (2002).CrossRefGoogle Scholar
23.Merzhanov, A.G.: Review, fundamentals, achievements and perspectives for development of solid flame combustion. Russ. Chem. Bull. 64, 1 (1997).CrossRefGoogle Scholar
24.Hwang, J.H., Dravid, V.P., Teng, M.H., Host, J.J., Euiott, B.R., Johnson, D.L., Mason, T.O.: Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 12, 1076 (1997).CrossRefGoogle Scholar
25.Liu, Z., Li, S., Yang, Y., Peng, S., Hu, Z., Qian, Y.: Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts. Adv. Mater. 15, 1946 (2003).CrossRefGoogle Scholar
26.Cherigui, M., Guessasma, S., Fenineche, N., Coddet, C.: FeNb magnetic properties correlated to microstructure features. Mater. Sci. Eng. B 116, 40 (2005).CrossRefGoogle Scholar
27.Lima, M.D., Bonadimann, R., de Andra, M.J., Toniolo, J.C., Bergmann, C.P.: Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis. J. Eur. Ceram. Soc. 26, 1213 (2006).CrossRefGoogle Scholar
28.Barin, I.: Thermodynamical Data of Pure Substances 3rd ed. (VCH Publishers, New York).Google Scholar