Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T13:42:03.744Z Has data issue: false hasContentIssue false

Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization

Published online by Cambridge University Press:  23 March 2016

Elham Babaie*
Affiliation:
Department of Bioengineering, University of Toledo, Toledo, Ohio 43606, USA
Yufu Ren
Affiliation:
Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, Ohio 43606, USA
Sarit B. Bhaduri
Affiliation:
Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, Ohio 43606, USA; and Department of Surgery (Dentistry), University of Toledo, Toledo, Ohio 43614, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper, for the first time, reports the results of microwave sintering of two emerging biomaterials, magnesium phosphate and amorphous magnesium calcium phosphate. Beneficial aspects of successful microwave sintering of calcium phosphate are well documented in the literature. The motivation for this work derives from the absence of any publication of similar nature on magnesium phosphates, which are becoming important with the rapid rise in interest in biodegradable Mg-alloys. Starting off with amorphous calcium magnesium phosphate and magnesium phosphate, the resulting microwave sintered product is a biphasic mixture of whitlockite substituted with magnesium and magnesium phosphate. The influence of the extent of Mg substitution on the mechanical properties, microstructure, and sintering behavior of tricalcium phosphate was evaluated. The results showed that the addition of Mg (up to the 50% wt/wt in relation to Ca mass) in the precursor compound of magnesium calcium phosphate improved the kinetics of the densification process and enhanced hardness values.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tardei, C., Grigore, F., Pasuk, I., and Stoleriu, S.: The study of Mg2+/Ca2+ substitution of-tricalcium phosphate. J. Optoelectron. Adv. Mater. 8(2), 568 (2006).Google Scholar
Dorozhkin, S.V.: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6(3), 715 (2010).CrossRefGoogle ScholarPubMed
Veljović, D., Zalite, I., Palcevskis, E., Smiciklas, I., Petrović, R., and Janaćković, Dj.: Microwave sintering of fine grained HA and HA/TCP bioceramics. Ceram. Int. 36(2), 595 (2010).CrossRefGoogle Scholar
Tõnsuaadu, K., Gross, K.A., Plūduma, L., and Veiderma, M.: A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 110(2), 647 (2011).CrossRefGoogle Scholar
Champion, E.: Sintering of calcium phosphate bioceramics. Acta Biomater. 9(4), 5855 (2013).CrossRefGoogle ScholarPubMed
Ramesh, S., Tan, C.Y., Bhaduri, S.B., and Teng, W.D.: Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceram. Int. 33(7), 1363 (2007).CrossRefGoogle Scholar
Agrawal, D.K., Fang, Y., Roy, D.M., and Roy, R.: Fabrication of hydroxyapatite ceramics by microwave processing. MRS Proc. 269, 231 (1992).CrossRefGoogle Scholar
Layrolle, P., Ito, A., and Tateishi, T.: Sol–gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J. Am. Ceram. Soc. 81(6), 1421 (1998).CrossRefGoogle Scholar
Mousa, S.: Study on synthesis of magnesium phosphate materials. Phosphorus Res. Bull. 24, 16 (2010).CrossRefGoogle Scholar
Ramesh, S., Tan, C.Y., Bhaduri, S.B., Teng, W.D., and Sopyan, I.: Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process. Technol. 206(1), 221 (2008).CrossRefGoogle Scholar
Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27(9), 1728 (2006).CrossRefGoogle ScholarPubMed
Sales, B.C., Chakoumakos, B.C., Boatner, L.A., and Ramey, J.O.: Structural properties of the amorphous phases produced by heating crystalline MgHPO4·3H2O. J. Non-Cryst. Solids 159(1), 121 (1993).CrossRefGoogle Scholar
Vorndran, E., Ewald, A., Müller, F.A., Zorn, K., Kufner, A., and Gbureck, U.: Formation and properties of magnesium–ammonium–phosphate hexahydrate biocements in the Ca–Mg–PO4 system. J. Mater. Sci.: Mater. Med. 22(3), 429 (2011).Google ScholarPubMed
Hanifi, A., Fathi, M.H., Sadeghi, H.M., and Varshosaz, J.: Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J. Mater. Sci.: Mater. Med. 21(8), 2393 (2010).Google ScholarPubMed
Cacciotti, I. and Bianco, A.: High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceram. Int. 37(1), 127 (2011).CrossRefGoogle Scholar
Kannan, S., Lemos, A.F., Rocha, J.H.G., and Ferreira, J.M.F.: Characterization and mechanical performance of the Mg-stabilized β-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite. J. Am. Ceram. Soc. 89(9), 2757 (2006).Google Scholar
Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F.A., and Greil, P.: Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 26(17), 3379 (2005).CrossRefGoogle ScholarPubMed
Babaie, E., Zhou, H., Lin, B., and Bhaduri, S.B.: Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium–calcium phosphate. Mater. Sci. Eng., C 53, 204 (2015).CrossRefGoogle ScholarPubMed
Zhang, X., Jiang, F., Groth, T., and Vecchio, K.S.: Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution. J. Mater. Sci.: Mater. Med. 19(9), 3063 (2008).Google ScholarPubMed
Marchi, J., Dantas, A.C.S., Greil, P., Bressiani, J.C., Bressiani, A.H.A., and Müller, F.A.: Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater. Res. Bull. 42(6), 1040 (2007).CrossRefGoogle Scholar
Ryu, H-S., Hong, K.S., Lee, J-K., Kim, D.J., Lee, J.H., Chang, B-S., Lee, D-h., Lee, C-K., and Chung, S-S.: Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials 25(3), 393 (2004).CrossRefGoogle ScholarPubMed
Kalita, S.J. and Bhatt, H.A.: Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Mater. Sci. Eng., C 27(4), 837 (2007).CrossRefGoogle Scholar
Wagner, D.E., Jones, A.D., Zhou, H., and Bhaduri, S.B.: Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Mater. Sci. Eng., C 33(3), 1710 (2013).CrossRefGoogle ScholarPubMed
Niihara, K.: Indentation microfracture of ceramics—Its application and problems. Ceram. Jpn. 20(1), 12 (1985).Google Scholar
Ren, F., Leng, Y., Xin, R., and Ge, X.: Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6(7), 2787 (2010).CrossRefGoogle ScholarPubMed
Cacciotti, I., Bianco, A., Lombardi, M., and Montanaro, L.: Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour. J. Eur. Ceram. Soc. 29(14), 2969 (2009).CrossRefGoogle Scholar
Rodrigues, A. and Lebugle, A.: Influence of ethanol in the precipitation medium on the composition, structure and reactivity of tricalcium phosphate. Colloids Surf., A 145(1), 191 (1998).CrossRefGoogle Scholar
Hesaraki, S., Safari, M., and Shokrgozar, M.A.: Composite bone substitute materials based on β-tricalcium phosphate and magnesium-containing sol–gel derived bioactive glass. J. Mater. Sci.: Mater. Med. 20(10), 2011 (2009).Google ScholarPubMed
Tan, C.Y., Yaghoubi, A., Ramesh, S., Adzila, S., Purbolaksono, J., Hassan, M.A., and Kutty, M.G.: Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceram. Int. 39(8), 8979 (2013).CrossRefGoogle Scholar
Kalita, S.J., Bhardwaj, A., and Bhatt, H.A.: Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng., C 27(3), 441 (2007).CrossRefGoogle Scholar
Laasri, S., Taha, M., Laghzizil, A., Hlil, E.K., and Chevalier, J.: The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Mater. Res. Bull. 45(10), 1433 (2010).CrossRefGoogle Scholar