Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T18:46:46.845Z Has data issue: false hasContentIssue false

Microstructure of (Nd, Eu, Gd)-123 matrix with (Nd, Eu, Gd)-211 inclusions

Published online by Cambridge University Press:  31 January 2011

M. Muralidhar*
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division III, 1–16–25, Shibaura, Minato-Ku, Tokyo 105–0023 Japan
M. Jirsa
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division III, 1–16–25, Shibaura, Minato-Ku, Tokyo 105–0023 Japan
K. Iida
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division III, 1–16–25, Shibaura, Minato-Ku, Tokyo 105–0023 Japan
N. Sakai
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division III, 1–16–25, Shibaura, Minato-Ku, Tokyo 105–0023 Japan
M. Murakami
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), Division III, 1–16–25, Shibaura, Minato-Ku, Tokyo 105–0023 Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microstructure of (Nd, Eu, Gd)Ba2Cu3O7−δ (NEG-123) samples with (Nd, Eu, Gd)2BaCuO5 (NEG-211) particles were observed by transmission electron microscopy. High-resolution electron microscopy observation demonstrated that the density of microstructural defects was small around the NEG-211 secondary phase particles. Furthermore, the 123/211 interfaces were found to be very clean and sharp. Chemical compositional analysis of the submicron secondary phase particles revealed that these fine particles are not composed of NEG-211 but Eu2BaCuO5 (Eu-211) or Gd2BaCuO5 (Gd-211).

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoo, S.I., Sakai, N., Takaichi, H., and Murakami, M., Appl. Phys. Lett. 65, 633 (1994).CrossRefGoogle Scholar
2.Murakami, M., Sakai, N., Higuchi, T., and Yoo, S.I., Supercond. Sci. Technol. 9, 1015 (1996).CrossRefGoogle Scholar
3.Koblischka, M.R., van Dalen, A.J.J., Higuchi, T., Yoo, S.I., and Murakami, M., Phys. Rev. B 58, 2863 (1998).CrossRefGoogle Scholar
4.Muralidhar, M., Koblischka, M.R., Saitoh, T., and Murakami, M., Supercond. Sci. Technol. 11, 1349 (1998).CrossRefGoogle Scholar
5.Pradhan, A.K., Muralidhar, M., Koblischka, M.R., Murakami, M., and Koshizuka, N., Appl. Phys. Lett. 86, 5705 (1999).Google Scholar
6.Muralidhar, M., Koblischka, M.R., Diko, P., and Murakami, M., Appl. Phys. Lett. 76, 91 (2000).CrossRefGoogle Scholar
7.Muralidhar, M., Koblischka, M.R., and Murakami, M., Supercond. Sci. Technol. 12, 555 (1999).CrossRefGoogle Scholar
8.Murakami, M., Melt Processed High-Temperature Superconductors (World Scientific Publishing, Singapore, 1992).Google Scholar
9.Murakami, M., Progress in Materials Science 38, 311 (1994).CrossRefGoogle Scholar
10.Salama, K. and Lee, D.F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
11.Obradors, X., Yu, R., Sandiumenge, F., Martinez, B., Vilalta, N., Gomis, V., Puig, T., and Pinol, S., Supercond. Sci. Technol. 10, 884 (1997).CrossRefGoogle Scholar
12.Daeumling, M., Sentjens, J.M., and Larbalesties, D.C., Nature 346, 322 (1990).CrossRefGoogle Scholar
13.Liu, J.Z., Jia, X.Y., Shelton, R.N., and Fluss, M.J., Phys. Rev. Lett. 66, 1354 (1991).CrossRefGoogle Scholar
14.Sandiumenge, F. and Radier, J, in Studies of High Temperature Superconductors, edited by Narlikar, A., (Nova Science, New York, 1998).Google Scholar
15.Muralidhar, M., Koblischka, M.R., and Murakami, M., Physica C 313, 232 (1999).CrossRefGoogle Scholar
16.Muralidhar, M., Koblischka, M.R., and Murakami, M., European Physical Journal Applied Physics 7, 99 (1999).CrossRefGoogle Scholar
17.Muralidhar, M., Koblischka, M.R., and Murakami, M., Supercond. Sci. Technol. 12, 105 (1999).CrossRefGoogle Scholar
18.Kim, C.J., Kim, K.B., Kuk, I.H., and Hong, G.W., J. Mater. Res. 12, 38 (1997).Google Scholar
19.Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Koshizuk, N., and Tanaka, S., Jpn. J. Appl. Phys. 29, 1428 (1990).CrossRefGoogle Scholar
20.Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).CrossRefGoogle Scholar
21.Muralidhar, M. and Murakami, M., Supercond. Sci. Technol. 13, 1315, (2000).CrossRefGoogle Scholar