Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T09:15:17.811Z Has data issue: false hasContentIssue false

Microstructure evolution of Ca0.33CoO2 thin films investigated by high-angle annular dark-field scanning transmissionelectron microscopy

Published online by Cambridge University Press:  26 July 2012

Rong Huang*
Affiliation:
Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
Teruyasu Mizoguchi
Affiliation:
Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
Kenji Sugiura
Affiliation:
Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
Shin-ichi Nakagawa
Affiliation:
Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
Hiromichi Ohta
Affiliation:
Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
Tomohiro Saito
Affiliation:
Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
Kunihito Koumoto
Affiliation:
Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
Tsukasa Hirayama
Affiliation:
Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
Yuichi Ikuhara
Affiliation:
Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan; and Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microstructures of epitaxial Ca0.33CoO2 thin films, which were grown on m plane and c(0001) plane of α–Al2O3 by the reactive solid-phase epitaxy (R-SPE) method and the subsequent ion-exchange treatment, were investigated in detail by using selected-area electron diffraction, high-resolution transmission electron microcopy, spherical-aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (Cs-corrected HAADF-STEM), and electron energy-loss spectroscopy (EELS). Detailed electron diffraction analyses reveal that the orientation relationships between Ca0.33CoO2 thin film and substrate are and , having an angle of about 43° with for the film deposited on m plane, and and for the film deposited on c(0001) plane though a Ca–Al–O amorphous layer formed between them. CoO seed layer near the interface and residual Co3O4 phase inside the films were observed and identified by HAADF-STEM and EELS in both samples. Such microstructural configuration indicates that the processes of film growth during R-SPE are (i) oxidation of CoO into Co3O4 with residual CoO layer near the interface and (ii) intercalation of Na+ layer into Co3O4 to achieve the layered NaxCoO2 film while forming Na–Al–O amorphous layer at the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Terasaki, I., Sasago, Y., Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 1997CrossRefGoogle Scholar
2.Motohashi, T., Naujalis, E., Ueda, R., Isawa, K., Karppinen, M., Yamauchi, H.: Simultaneously enhanced thermoelectric power and reduced resistivity of NaxCo2O4 by controlling Na nonstoichiometry. Appl. Phys. Lett. 79, 1480 2001CrossRefGoogle Scholar
3.Wang, Y., Rogado, N.S., Cava, R.J., Ong, N.P.: Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423, 425 2003CrossRefGoogle ScholarPubMed
4.Lee, M., Viciu, L., Li, L., Wang, Y., Foo, M.L., Watauchi, S., Pascal, R.A. Jr., Cava, R.J., Ong, N.P.: Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nat. Mater. 5, 537 2006CrossRefGoogle ScholarPubMed
5.Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R.A., Sasaki, T.: Superconductivity in two-dimensional CoO2 layers. Nature 422, 53 2003CrossRefGoogle ScholarPubMed
6.Schaak, R.E., Klimczuk, T., Foo, M.L., Cava, R.J.: Superconductivity phase diagram of NaxCoO2·1.3H2O. Nature 424, 527 2003CrossRefGoogle Scholar
7.Roger, M., Morris, D.J.P., Tennant, D.A., Gutmann, M.J., Goff, J.P., Hoffmann, J-U., Feyerherm, R., Dudzik, E., Prabhakaran, D., Boothroyd, A.T., Shannon, N., Lake, B., Deen, P.P.: Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature 445, 631 2007CrossRefGoogle ScholarPubMed
8.Chaloupka, J., Khaliullin, G.: Spin polaron theory for the photoemission spectra of layered cobaltates. Phys. Rev. Lett. 99, 256406 2007CrossRefGoogle ScholarPubMed
9.Marianetti, C.A., Haule, K., Parcollet, O.: Quasiparticle dispersion and heat capacity of Na0.3CoO2: A dynamical mean-field theory study. Phys. Rev. Lett. 99, 246404 2007CrossRefGoogle ScholarPubMed
10.Vaulx, C., Julien, M-H., Berthier, C., Hébert, S., Pralong, V., Maignan, A.: Electronic correlations in CoO2, the parent compound of triangular cobaltates. Phys. Rev. Lett. 98, 246402 2007CrossRefGoogle ScholarPubMed
11.Qian, D., Wray, L., Hsieh, D., Viciu, L., Cava, R.J., Luo, J.L., Wu, D., Wang, N.L., Hasan, M.Z.: Complete d-band dispersion relation in sodium cabaltates. Phys. Rev. Lett. 97, 186405 2006CrossRefGoogle Scholar
12.Yang, H.B., Pan, Z.H., Sekharan, A.K.P., Sato, T., Souma, S., Takahashi, T., Jin, R., Sales, B.C., Mandrus, D., Fedorov, A.V., Wang, Z., Ding, H.: Fermi surface evolution and Luttinger theorem in NaxCoO2: A systematic photoemission study. Phys. Rev. Lett. 95, 146401 2005CrossRefGoogle ScholarPubMed
13.Bourgeois, A., Aligia, A.A., Kroll, T., Núez-Regueiro, M.D.: Electronic structure and Fermi-surface topology of NaxCoO2. Phys. Rev. B 75, 174518 2007CrossRefGoogle Scholar
14.Peterson, M.R., Shastry, B.S., Haerter, J.O.: Thermoelectric effects in a strongly correlated model for NaxCoO2. Phys. Rev. B 76, 165118 2007CrossRefGoogle Scholar
15.Chen, D.P., Wang, X., Lin, C.T., Dou, S.X.: Single-crystal growth and anisotropic magnetic properties of nonstoichiometric three-layer sodium cobalt oxides. Phys. Rev. B 76, 134511 2007CrossRefGoogle Scholar
16.Kroll, T., Knupfer, M., Geck, J., Hess, C., Schwieger, T., Krabbes, G., Sekar, C., Batchelor, D.R., Berger, H., Büchner, B.: X-ray absorption spectroscopy of NaxCoO2 layered cobaltates. Phys. Rev. B 74, 115123 2006CrossRefGoogle Scholar
17.Sakurai, H., Tsujii, N., Suzuki, O., Kitazawa, H., Kido, G., Takada, K., Sasaki, T., Takayama-Muromachi, E.: Valence and Na content dependences of superconductivity in NaxCoO2·yH2O. Phys. Rev. B 74, 092502 2006CrossRefGoogle Scholar
18.Kanno, T., Yotsuhashi, S., Adachi, H.: Anisotropic thermoelectric properties in layered cobaltite AxCoO2 (A = Sr and Ca) thin films. Appl. Phys. Lett. 85, 739 2004CrossRefGoogle Scholar
19.Hu, Y.F., Si, W.D., Sutter, E., Li, Q.: In situ growth of c-axis-oriented Ca3O4O9 thin films on Si (100). Appl. Phys. Lett. 86, 082103 2005CrossRefGoogle Scholar
20.Ohta, H., Nomura, K., Orita, M., Hirano, M., Ueda, K., Suzuki, T., Ikuhara, Y., Hosono, H.: Single-crystalline films of the homologous series InGaO3(ZnO)m grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 13, 139 2003CrossRefGoogle Scholar
21.Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 2003CrossRefGoogle ScholarPubMed
22.Ogo, Y., Nomura, K., Yanagi, H., Ohta, H., Kamiya, T., Hirano, M., Hosono, H.: Growth and structure of heteroepitaxial thin films of homologous compounds RAO3(MO)m by reactive solid-phase epitaxy: Applicability to a variety of materials and epitaxial template layers. Thin Solid Films 496, 64 2006CrossRefGoogle Scholar
23.Ohta, H., Mizoguchi, H., Hirano, M., Narushima, S., Kamiya, T., Hosono, H.: Fabrication and characterization of heteroepitaxial p-n junction diode composed of wide-gap oxide semiconductors p-ZnRh2O4/n-ZnO. Appl. Phys. Lett. 82, 823 2003CrossRefGoogle Scholar
24.Hiramatsu, H., Ueda, K., Ohta, H., Orita, M., Hirano, M., Hosono, H.: Heteroepitaxial growth of a wide-gap p-type semiconductor, LaCuOS. Appl. Phys. Lett. 81, 598 2002CrossRefGoogle Scholar
25.Ohta, H., Kim, S., Ohta, S., Koumoto, K., Hirano, M., Hosono, H.: Reactive solid-phase epitaxial growth of NaxCoO2(x ∼ 0.83) via lateral diffusion of Na into a cobalt oxide epitaxial layer. Cryst. Growth Des. 5, 25 2005CrossRefGoogle Scholar
26.Ohta, H., Mizutani, A., Sugiura, K., Hirano, M., Hosono, H., Koumoto, K.: Surface modification of glass substrate for oxide heteroepitaxy: Pasteable three-dimensionally oriented layered oxide thin films. Adv. Mater. 18, 1649 2006CrossRefGoogle Scholar
27.Sugiura, K., Ohta, H., Nomura, K., Hirano, M., Hosono, H., Koumoto, K.: Fabrication and thermoelectric properties of layered cobaltite, γ–Sr0.32Na0.21CoO2 epitaxial films. Appl. Phys. Lett. 88, 082109 2006CrossRefGoogle Scholar
28.Sugiura, K., Ohta, H., Ishida, Y., Huang, R., Saito, T., Ikuhara, Y., Nomura, K., Hosono, H., Koumoto, K.: Observation of metal-insulator transition derived from the distribution of interlayer cations in layered cobaltates. (unpublished)Google Scholar
29.Mizutani, A., Sugiura, K., Ohta, H., Koumoto, K.: Epitaxial film growth of LixCoO2 (0.6 ≤ x ≤ 0.9) via topotactic ion exchange of Na0.8CoO2. Cryst. Growth Des. 8, 755 2008CrossRefGoogle Scholar
30.Sugiura, K., Ohta, H., Nomura, K., Hirano, M., Hosono, H., Koumoto, K.: High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 2006CrossRefGoogle Scholar
31.Zandbergen, H.W., Foo, M.L., Xu, Q., Kumar, V., Cava, R.J.: Sodium ion ordering in NaxCoO2: Electron diffraction study. Phys. Rev. B 70, 024101 2004CrossRefGoogle Scholar
32.Yang, H.X., Shi, Y.G., Liu, X., Xiao, R.J., Tian, H.F., Li, J.Q.: Structural properties and cation ordering in layered hexagonal CaxCoO2. Phys. Rev. B 73, 014109 2006CrossRefGoogle Scholar
33.Cushing, B.L., Wiley, J.B.: Topotactic routes to layered calcium cobalt oxides. J. Solid State Chem. 141, 385 1998CrossRefGoogle Scholar
34.Pennycook, S.J., Jesson, D.E.: High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 1991CrossRefGoogle Scholar
35.Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T., Ikuhara, Y.: Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 2006CrossRefGoogle ScholarPubMed
36.Shibata, N., Chisholm, M.F., Nakamura, A., Pennycook, S.J., Yamamoto, T., Ikuhara, Y.: Nonstoichiometric dislocation cores in α–alumina. Science 316, 82 2007CrossRefGoogle ScholarPubMed
37.Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope 2nd ed.Plenum New York 1996 225CrossRefGoogle Scholar
38.Wan, D., Komvopoulos, K.: Thickness effect on thermally induced phase transformations in sputtered titanium-nickel shape-memory films. J. Mater. Res. 20, 1606 2005CrossRefGoogle Scholar