Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T17:53:25.418Z Has data issue: false hasContentIssue false

Microstructure and mechanical properties of novel ternary electroconductive ceramics

Published online by Cambridge University Press:  01 November 2004

Diletta Sciti*
Affiliation:
ISTEC-CNR, I-48018 Faenza, Italy
Stefano Guicciardi
Affiliation:
ISTEC-CNR, I-48018 Faenza, Italy
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electroconductive ceramic composites, constituted of an insulating matrix (a composite AlN-SiC) containing 30 vol% of an electroconductive phase (MoSi2, ZrB2, or ZrC), were densified through hot-pressing. Microstructure and mechanical properties were compared to those of the AlN-SiC matrix material. All the ternary composites are good electrical conductors, with resistivities in the range 0.3 × 10-3 to 4 × 10-3 Ω·cm. Room temperature properties are improved by the addition of the electroconductive particles. Strength and toughness measurements at high temperature show that MoSi2-containing composite is stable up to 1300 °C (strength 611 MPa, toughness 3.7 MPa·m1/2), whereas ZrB2-containing composite is stable up to 1000 °C. ZrC-containing composite is not suitable for high-temperature applications due to poor oxidation resistance.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lubis, A.H., Hetch, N.L., Graves, G.A. and Ruh, R.: Microstructure-property relations of hot pressed silicon carbide-aluminum nitride compositions at room and elevated temperatures. J. Am. Ceram. Soc. 82, 2481 (1999).CrossRefGoogle Scholar
2Huang, J-L. and Jih, J-M.: Investigation of SiC-AlN: Part II, mechanical properties. J. Am. Ceram. Soc. 79, 1262 (1996).CrossRefGoogle Scholar
3Li, J-F. and Watanabe, R.: Pressureless sintering and high-temperature strength of AlN-SiC ceramics. J. Ceram. Soc. Jpn. 102, 724 (1994).CrossRefGoogle Scholar
4Xu, Y., Zangvil, A., Landon, M. and Thevenot, F.: Microstructure and mechanical properties of hot-pressed silicon carbide-aluminum nitride compositions. J. Am. Ceram. Soc. 75, 325 (1992).CrossRefGoogle Scholar
5Li, J-F. and Watanabe, R.: Preparation and mechanical properties of SiC-AlN ceramic alloy. J. Mater. Sci. 26, 4813 (1991).CrossRefGoogle Scholar
6Sciti, D., Guicciardi, S. and Bellosi, A.: Microstructure and properties of MoSi2-Si3N4 composites. J. Cer. Proc. Res. 3, 87 (2002).Google Scholar
7Petrovic, J.J., Pena, M.I. and Kung, H.H.: Fabrication and microstructure of MoSi2 reinforced – Si3N4 matrix composites. J. Am. Ceram. Soc. 80, 1111 (1997).CrossRefGoogle Scholar
8Newman, A., Sampath, S. and Herman, H.: Processing and properties of MoSi2-SiC and MoSi2-Al2O3. Mater. Sci. Eng. A 261, 252 (1999).CrossRefGoogle Scholar
9Chawla, K.K., Petrovic, J.J., Alba, JoseJr., and Hexemer, R.: Phase identification in reactively sintered molybdenum disilicide. Mater. Sci. Eng. A 261, 181 (1999).CrossRefGoogle Scholar
10Jang, Y-L. and Lavernia, E.J.: Review, processing of molybdenum disilicide. J. Mater. Sci. 29, 2557 (1994).CrossRefGoogle Scholar
11 U.S. Patent No. 5 820 789: High voltage ceramic igniter, Oct. 13, 1998.Google Scholar
12Monteverde, F., Bellosi, A. and Guicciardi, S.: Processing and properties of zirconium diboride-based composites. J. Eur. Ceram. Soc. 22, 279 (2002).CrossRefGoogle Scholar
13Monteverde, F., Guicciardi, S. and Bellosi, A.: Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater. Sci. Eng. A 346, 310 (2003).CrossRefGoogle Scholar
14Monteverde, F. and Bellosi, A.: Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2. Adv. Eng. Mater. 7, 508 (2003).CrossRefGoogle Scholar
15Basu, B., Vleugels, J. and Van der Biest, O.: Development of ZrO2-ZrB2 composites. J. Alloys Compd. 334, 200 (2002).CrossRefGoogle Scholar
16Zhang, G-J., Deng, Z-Y., Kondo, N., Yang, J-F. and Ohji, T.: Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc. 83, 2330 (2000).CrossRefGoogle Scholar
17Grzesik, Z., Dickerson, M.B. and Sandhage, K.H.: Incongruent reduction of tungsten carbide by a zirconium-copper melt. J. Mater. Res. 18, 2135 (2003).CrossRefGoogle Scholar
18Song, G.M., Zhou, Y. and Wang, Y.J.: Effect of carbide particles on the ablation properties of tungsten composites. Mater. Charact. 50, 293 (2003).CrossRefGoogle Scholar
19Dickerson, M.B., Snyder, R.L. and Sandhage, K.H.: Dense, near-net-shaped, carbide/refractory metal composites at modest temperatures by the displacive compensation of porosity (DCP) method. J. Am. Ceram. Soc. 85, 730 (2002).CrossRefGoogle Scholar
20Song, G.M., Wang, Y.J. and Zhou, Y.: Elevated temperature ablation resistance and thermophysical properties of tungsten matrix composites reinforced with ZrC particles. J. Mater. Sci. 36, 4625 (2001).CrossRefGoogle Scholar
21Song, G.M., Zhou, Y., Wang, Y.J. and Lei, T.C.: Elevated temperature strength of a 20 vol% ZrCp/W composite. J. Mater. Sci. Lett. 17, 1739 (1998).CrossRefGoogle Scholar
22Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A. and Causey, S.J.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).CrossRefGoogle Scholar
23Song, G.-Ming, Wang, Y.J. and Zhou, Y.: The mechanical and thermo-physical properties of ZrC/W composites at elevated temperature. Mater. Sci. Eng. A 334, 223 (2002).CrossRefGoogle Scholar
24Krnel, K., Sciti, D., Landi, E. and Bellosi, A.: Surface modification and oxidation kinetics of hot-pressed AlN-SiC-MoSi2 electroconductive ceramic composite. Appl. Surf. Sci. 210, 274 (2003).CrossRefGoogle Scholar
25Sciti, D., Guicciardi, S., Melandri, C. and Bellosi, A.: High-temperature resistant in the AlN-SiC-MoSi2 system. J. Am. Ceram. Soc. 86, 1720 (2003).CrossRefGoogle Scholar
26Munz, D.G., Shannon, J.L.Jr., and Bubsey, R.T.: Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens. International Journal of Fracture 16, R137 (1980).CrossRefGoogle Scholar
27O’Meara, C., Dunlop, G.L., Pompe, R. in High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers, B.V., Amsterdam, The Netherlands, 1987), pp. 265270Google Scholar
28Shackelford, J. F., Alexander, W., eds.: CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL, 2001.Google Scholar
29Talwar, D.N., Sofranko, D., Mooney, C. and Tallo, S.: Elastic, structural, bonding and defect properties of zinc-blende BN, AlN, GaN, InN and their alloys. Mater. Sci. Eng. B 90, 269 (2002).CrossRefGoogle Scholar
30Nakamura, M., Matsumoto, S., Hirano, T.: Elastic constants of MoSi2 and WSi2 single crystals. J. Mater. Sci. 29, 3309 1990.CrossRefGoogle Scholar
31Newmann, A., Jewett, T., Sampath, S., Bernt, C., Herman, H.: Indentation response of molybdenum disilicide. J. Mater. Res. 13, 2662 (1998).CrossRefGoogle Scholar
32Mitterer, C.: Borides in thin film technology. J. Solid State Chem. 133, 279 (1997).CrossRefGoogle Scholar
33Kral, C., Lengauer, W., Rafaja, D. and Ettmajer, P.: Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides. J. Alloys Compd. 265, 215 (1998).CrossRefGoogle Scholar
34Wang, H.L. and Hon, M.H.: Temperature dependence of ceramics hardness. Ceram. Int. 25, 267 (1999).CrossRefGoogle Scholar
35Walpole, L.J.: On bounds for the overall elastic moduli of inhomogeneous systems. J. Mech. Phys. Solids 14, 151 (1966).CrossRefGoogle Scholar
36Kim, H.S.: On the rule of mixtures for the hardness of particle reinforced composites. Mater. Sci. Eng. A 289, 30 (2000).CrossRefGoogle Scholar
37Box, G.E.P., Hunter, W.G. and Hunter, J.S.: Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building (John Wiley & Sons, Inc., New York, 1978), p. 165Google Scholar
38Taya, M., Hayashi, S., Kobayashi, A.S. and Yoon, H.S.: Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc. 73, 1382 (1990).CrossRefGoogle Scholar
39Evans, A.G. and Faber, K.T.: Crack deflection processes—I. Theory. J. Am. Ceram. Soc. 31, 565 (1983).Google Scholar
40Pezzotti, G.: On the actual contribution of crack deflection in toughening platelet-reinforced brittle-matrix composites. Acta Metall. Mater. 41, 1825 (1993).CrossRefGoogle Scholar
41Cutler, R.A. in Engineered Materials Handbook, Ceramics and Glasses, Vl. 4 (ASM International, The Materials Information Society, Materials Park, OH), 1991 , p. 787.Google Scholar